Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm2.43 | Structured version Visualization version GIF version |
Description: Absorption of redundant antecedent. Also called the "Contraction" or "Hilbert" axiom. Theorem *2.43 of [WhiteheadRussell] p. 106. (Contributed by NM, 10-Jan-1993.) (Proof shortened by Mel L. O'Cat, 15-Aug-2004.) |
Ref | Expression |
---|---|
pm2.43 | ⊢ ((𝜑 → (𝜑 → 𝜓)) → (𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.27 42 | . 2 ⊢ (𝜑 → ((𝜑 → 𝜓) → 𝜓)) | |
2 | 1 | a2i 14 | 1 ⊢ ((𝜑 → (𝜑 → 𝜓)) → (𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: ax13b 2035 ralbidar 42063 rexbidar 42064 |
Copyright terms: Public domain | W3C validator |