![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > a2i | Structured version Visualization version GIF version |
Description: Inference distributing an antecedent. Inference associated with ax-2 7. Its associated inference is mpd 15. (Contributed by NM, 29-Dec-1992.) |
Ref | Expression |
---|---|
a2i.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
a2i | ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | a2i.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | ax-2 7 | . 2 ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-2 7 |
This theorem is referenced by: mpd 15 imim2i 16 sylcom 30 pm2.43 56 ancl 544 ancr 546 anc2r 554 hbim1 2295 ralimia 3077 ceqsalgALT 3515 rspct 3607 elabgtOLDOLD 3673 fvmptt 7035 tfi 7873 fnfi 9215 imafiOLD 9351 finsschain 9396 ordiso2 9552 ordtypelem7 9561 dfom3 9684 infdiffi 9695 cantnfp1lem3 9717 cantnf 9730 r1ordg 9815 ttukeylem6 10551 fpwwe2lem7 10674 wunfi 10758 dfnn2 12276 trclfvcotr 15044 psgnunilem3 19528 pgpfac1 20114 fiuncmp 23427 filssufilg 23934 ufileu 23942 dfn0s2 28350 pjnormssi 32196 bnj1110 34974 waj-ax 36396 bj-nnclav 36528 bj-sb 36669 bj-equsal1 36806 bj-equsal2 36807 rdgeqoa 37352 wl-mps 37487 refimssco 43596 natlocalincr 46829 atbiffatnnb 46861 rexrsb 47049 elsetrecslem 48929 |
Copyright terms: Public domain | W3C validator |