| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > a2i | Structured version Visualization version GIF version | ||
| Description: Inference distributing an antecedent. Inference associated with ax-2 7. Its associated inference is mpd 15. (Contributed by NM, 29-Dec-1992.) |
| Ref | Expression |
|---|---|
| a2i.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| a2i | ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | a2i.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | ax-2 7 | . 2 ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-2 7 |
| This theorem is referenced by: mpd 15 imim2i 16 sylcom 30 pm2.43 56 ancl 544 ancr 546 anc2r 554 hbim1 2299 ralimia 3066 ceqsalgALT 3473 rspct 3563 fvmptt 6949 tfi 7783 fnfi 9087 imafiOLD 9200 finsschain 9243 ordiso2 9401 ordtypelem7 9410 dfom3 9537 infdiffi 9548 cantnfp1lem3 9570 cantnf 9583 r1ordg 9671 ttukeylem6 10405 fpwwe2lem7 10528 wunfi 10612 dfnn2 12138 trclfvcotr 14916 psgnunilem3 19409 pgpfac1 19995 fiuncmp 23320 filssufilg 23827 ufileu 23835 dfn0s2 28261 pjnormssi 32146 bnj1110 34992 waj-ax 36454 bj-nnclav 36586 bj-sb 36727 bj-equsal1 36864 bj-equsal2 36865 rdgeqoa 37410 wl-mps 37547 refimssco 43646 dfbi1ALTa 44978 simprimi 44979 natlocalincr 46920 atbiffatnnb 46949 rexrsb 47137 elsetrecslem 49737 |
| Copyright terms: Public domain | W3C validator |