![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > a2i | Structured version Visualization version GIF version |
Description: Inference distributing an antecedent. Inference associated with ax-2 7. Its associated inference is mpd 15. (Contributed by NM, 29-Dec-1992.) |
Ref | Expression |
---|---|
a2i.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
a2i | ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | a2i.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | ax-2 7 | . 2 ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-2 7 |
This theorem is referenced by: mpd 15 imim2i 16 sylcom 30 pm2.43 56 ancl 544 ancr 546 anc2r 554 hbim1 2301 ralimia 3086 ceqsalgALT 3526 rspct 3621 elabgtOLDOLD 3687 fvmptt 7049 tfi 7890 fnfi 9244 imafiOLD 9382 finsschain 9429 ordiso2 9584 ordtypelem7 9593 dfom3 9716 infdiffi 9727 cantnfp1lem3 9749 cantnf 9762 r1ordg 9847 ttukeylem6 10583 fpwwe2lem7 10706 wunfi 10790 dfnn2 12306 trclfvcotr 15058 psgnunilem3 19538 pgpfac1 20124 fiuncmp 23433 filssufilg 23940 ufileu 23948 dfn0s2 28354 pjnormssi 32200 bnj1110 34958 waj-ax 36380 bj-nnclav 36512 bj-sb 36653 bj-equsal1 36790 bj-equsal2 36791 rdgeqoa 37336 wl-mps 37461 refimssco 43569 natlocalincr 46795 atbiffatnnb 46827 rexrsb 47015 elsetrecslem 48791 |
Copyright terms: Public domain | W3C validator |