Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > a2i | Structured version Visualization version GIF version |
Description: Inference distributing an antecedent. Inference associated with ax-2 7. Its associated inference is mpd 15. (Contributed by NM, 29-Dec-1992.) |
Ref | Expression |
---|---|
a2i.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
a2i | ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | a2i.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | ax-2 7 | . 2 ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-2 7 |
This theorem is referenced by: mpd 15 imim2i 16 sylcom 30 pm2.43 56 ancl 544 ancr 546 anc2r 554 hbim1 2297 ralimia 3084 ceqsalgALT 3455 rspct 3537 elabgtOLD 3597 fvmptt 6877 tfi 7675 imafi 8920 fnfi 8925 finsschain 9056 ordiso2 9204 ordtypelem7 9213 dfom3 9335 infdiffi 9346 cantnfp1lem3 9368 cantnf 9381 r1ordg 9467 ttukeylem6 10201 fpwwe2lem7 10324 wunfi 10408 dfnn2 11916 trclfvcotr 14648 psgnunilem3 19019 pgpfac1 19598 fiuncmp 22463 filssufilg 22970 ufileu 22978 pjnormssi 30431 bnj1110 32862 waj-ax 34530 bj-nnclav 34653 bj-sb 34796 bj-equsal1 34934 bj-equsal2 34935 rdgeqoa 35468 wl-mps 35593 refimssco 41104 atbiffatnnb 44294 rexrsb 44479 elsetrecslem 46290 |
Copyright terms: Public domain | W3C validator |