| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > a2i | Structured version Visualization version GIF version | ||
| Description: Inference distributing an antecedent. Inference associated with ax-2 7. Its associated inference is mpd 15. (Contributed by NM, 29-Dec-1992.) |
| Ref | Expression |
|---|---|
| a2i.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| a2i | ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | a2i.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | ax-2 7 | . 2 ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-2 7 |
| This theorem is referenced by: mpd 15 imim2i 16 sylcom 30 pm2.43 56 ancl 544 ancr 546 anc2r 554 hbim1 2297 ralimia 3063 ceqsalgALT 3484 rspct 3574 fvmptt 6988 tfi 7829 fnfi 9142 imafiOLD 9265 finsschain 9310 ordiso2 9468 ordtypelem7 9477 dfom3 9600 infdiffi 9611 cantnfp1lem3 9633 cantnf 9646 r1ordg 9731 ttukeylem6 10467 fpwwe2lem7 10590 wunfi 10674 dfnn2 12199 trclfvcotr 14975 psgnunilem3 19426 pgpfac1 20012 fiuncmp 23291 filssufilg 23798 ufileu 23806 dfn0s2 28224 pjnormssi 32097 bnj1110 34972 waj-ax 36402 bj-nnclav 36534 bj-sb 36675 bj-equsal1 36812 bj-equsal2 36813 rdgeqoa 37358 wl-mps 37495 refimssco 43596 dfbi1ALTa 44929 simprimi 44930 natlocalincr 46874 atbiffatnnb 46913 rexrsb 47101 elsetrecslem 49688 |
| Copyright terms: Public domain | W3C validator |