Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > a2i | Structured version Visualization version GIF version |
Description: Inference distributing an antecedent. Inference associated with ax-2 7. Its associated inference is mpd 15. (Contributed by NM, 29-Dec-1992.) |
Ref | Expression |
---|---|
a2i.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
a2i | ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | a2i.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | ax-2 7 | . 2 ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-2 7 |
This theorem is referenced by: mpd 15 imim2i 16 sylcom 30 pm2.43 56 ancl 545 ancr 547 anc2r 555 hbim1 2294 ralimia 3085 ceqsalgALT 3465 rspct 3547 elabgtOLD 3604 fvmptt 6895 tfi 7700 imafi 8958 fnfi 8964 finsschain 9126 ordiso2 9274 ordtypelem7 9283 dfom3 9405 infdiffi 9416 cantnfp1lem3 9438 cantnf 9451 r1ordg 9536 ttukeylem6 10270 fpwwe2lem7 10393 wunfi 10477 dfnn2 11986 trclfvcotr 14720 psgnunilem3 19104 pgpfac1 19683 fiuncmp 22555 filssufilg 23062 ufileu 23070 pjnormssi 30530 bnj1110 32962 waj-ax 34603 bj-nnclav 34726 bj-sb 34869 bj-equsal1 35007 bj-equsal2 35008 rdgeqoa 35541 wl-mps 35666 refimssco 41215 atbiffatnnb 44407 rexrsb 44592 elsetrecslem 46404 natlocalincr 46511 |
Copyright terms: Public domain | W3C validator |