| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > a2i | Structured version Visualization version GIF version | ||
| Description: Inference distributing an antecedent. Inference associated with ax-2 7. Its associated inference is mpd 15. (Contributed by NM, 29-Dec-1992.) |
| Ref | Expression |
|---|---|
| a2i.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| a2i | ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | a2i.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | ax-2 7 | . 2 ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-2 7 |
| This theorem is referenced by: mpd 15 imim2i 16 sylcom 30 pm2.43 56 ancl 544 ancr 546 anc2r 554 hbim1 2301 ralimia 3067 ceqsalgALT 3474 rspct 3559 fvmptt 6957 tfi 7791 fnfi 9096 imafiOLD 9209 finsschain 9252 ordiso2 9410 ordtypelem7 9419 dfom3 9546 infdiffi 9557 cantnfp1lem3 9579 cantnf 9592 r1ordg 9680 ttukeylem6 10414 fpwwe2lem7 10537 wunfi 10621 dfnn2 12147 trclfvcotr 14920 psgnunilem3 19412 pgpfac1 19998 fiuncmp 23322 filssufilg 23829 ufileu 23837 dfn0s2 28263 pjnormssi 32152 bnj1110 35017 waj-ax 36481 bj-nnclav 36613 bj-sb 36754 bj-equsal1 36891 bj-equsal2 36892 rdgeqoa 37437 wl-mps 37574 refimssco 43727 dfbi1ALTa 45059 simprimi 45060 natlocalincr 47001 atbiffatnnb 47039 rexrsb 47227 elsetrecslem 49827 |
| Copyright terms: Public domain | W3C validator |