| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > a2i | Structured version Visualization version GIF version | ||
| Description: Inference distributing an antecedent. Inference associated with ax-2 7. Its associated inference is mpd 15. (Contributed by NM, 29-Dec-1992.) |
| Ref | Expression |
|---|---|
| a2i.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| a2i | ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | a2i.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | ax-2 7 | . 2 ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-2 7 |
| This theorem is referenced by: mpd 15 imim2i 16 sylcom 30 pm2.43 56 ancl 544 ancr 546 anc2r 554 hbim1 2297 ralimia 3063 ceqsalgALT 3475 rspct 3565 fvmptt 6954 tfi 7793 fnfi 9102 imafiOLD 9223 finsschain 9268 ordiso2 9426 ordtypelem7 9435 dfom3 9562 infdiffi 9573 cantnfp1lem3 9595 cantnf 9608 r1ordg 9693 ttukeylem6 10427 fpwwe2lem7 10550 wunfi 10634 dfnn2 12159 trclfvcotr 14934 psgnunilem3 19393 pgpfac1 19979 fiuncmp 23307 filssufilg 23814 ufileu 23822 dfn0s2 28247 pjnormssi 32130 bnj1110 34951 waj-ax 36390 bj-nnclav 36522 bj-sb 36663 bj-equsal1 36800 bj-equsal2 36801 rdgeqoa 37346 wl-mps 37483 refimssco 43583 dfbi1ALTa 44916 simprimi 44917 natlocalincr 46861 atbiffatnnb 46900 rexrsb 47088 elsetrecslem 49688 |
| Copyright terms: Public domain | W3C validator |