Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > a2i | Structured version Visualization version GIF version |
Description: Inference distributing an antecedent. Inference associated with ax-2 7. Its associated inference is mpd 15. (Contributed by NM, 29-Dec-1992.) |
Ref | Expression |
---|---|
a2i.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
a2i | ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | a2i.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | ax-2 7 | . 2 ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-2 7 |
This theorem is referenced by: mpd 15 imim2i 16 sylcom 30 pm2.43 56 ancl 545 ancr 547 anc2r 555 hbim1 2298 ralimia 3087 ceqsalgALT 3464 rspct 3546 elabgtOLD 3606 fvmptt 6890 tfi 7692 imafi 8938 fnfi 8944 finsschain 9102 ordiso2 9250 ordtypelem7 9259 dfom3 9381 infdiffi 9392 cantnfp1lem3 9414 cantnf 9427 r1ordg 9535 ttukeylem6 10269 fpwwe2lem7 10392 wunfi 10476 dfnn2 11984 trclfvcotr 14716 psgnunilem3 19100 pgpfac1 19679 fiuncmp 22551 filssufilg 23058 ufileu 23066 pjnormssi 30524 bnj1110 32956 waj-ax 34597 bj-nnclav 34720 bj-sb 34863 bj-equsal1 35001 bj-equsal2 35002 rdgeqoa 35535 wl-mps 35660 refimssco 41183 atbiffatnnb 44373 rexrsb 44558 elsetrecslem 46371 |
Copyright terms: Public domain | W3C validator |