![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > a2i | Structured version Visualization version GIF version |
Description: Inference distributing an antecedent. Inference associated with ax-2 7. Its associated inference is mpd 15. (Contributed by NM, 29-Dec-1992.) |
Ref | Expression |
---|---|
a2i.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
a2i | ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | a2i.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | ax-2 7 | . 2 ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-2 7 |
This theorem is referenced by: mpd 15 imim2i 16 sylcom 30 pm2.43 56 ancl 546 ancr 548 anc2r 556 hbim1 2294 ralimia 3081 ceqsalgALT 3509 rspct 3599 elabgtOLD 3664 fvmptt 7019 tfi 7842 imafi 9175 fnfi 9181 finsschain 9359 ordiso2 9510 ordtypelem7 9519 dfom3 9642 infdiffi 9653 cantnfp1lem3 9675 cantnf 9688 r1ordg 9773 ttukeylem6 10509 fpwwe2lem7 10632 wunfi 10716 dfnn2 12225 trclfvcotr 14956 psgnunilem3 19364 pgpfac1 19950 fiuncmp 22908 filssufilg 23415 ufileu 23423 pjnormssi 31421 bnj1110 33993 waj-ax 35299 bj-nnclav 35422 bj-sb 35565 bj-equsal1 35702 bj-equsal2 35703 rdgeqoa 36251 wl-mps 36376 refimssco 42358 natlocalincr 45590 atbiffatnnb 45622 rexrsb 45808 elsetrecslem 47744 |
Copyright terms: Public domain | W3C validator |