| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > a2i | Structured version Visualization version GIF version | ||
| Description: Inference distributing an antecedent. Inference associated with ax-2 7. Its associated inference is mpd 15. (Contributed by NM, 29-Dec-1992.) |
| Ref | Expression |
|---|---|
| a2i.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| a2i | ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | a2i.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | ax-2 7 | . 2 ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-2 7 |
| This theorem is referenced by: mpd 15 imim2i 16 sylcom 30 pm2.43 56 ancl 544 ancr 546 anc2r 554 hbim1 2297 ralimia 3070 ceqsalgALT 3497 rspct 3587 fvmptt 7006 tfi 7848 fnfi 9192 imafiOLD 9326 finsschain 9371 ordiso2 9529 ordtypelem7 9538 dfom3 9661 infdiffi 9672 cantnfp1lem3 9694 cantnf 9707 r1ordg 9792 ttukeylem6 10528 fpwwe2lem7 10651 wunfi 10735 dfnn2 12253 trclfvcotr 15028 psgnunilem3 19477 pgpfac1 20063 fiuncmp 23342 filssufilg 23849 ufileu 23857 dfn0s2 28276 pjnormssi 32149 bnj1110 35013 waj-ax 36432 bj-nnclav 36564 bj-sb 36705 bj-equsal1 36842 bj-equsal2 36843 rdgeqoa 37388 wl-mps 37525 refimssco 43631 dfbi1ALTa 44964 simprimi 44965 natlocalincr 46905 atbiffatnnb 46941 rexrsb 47129 elsetrecslem 49563 |
| Copyright terms: Public domain | W3C validator |