| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > a2i | Structured version Visualization version GIF version | ||
| Description: Inference distributing an antecedent. Inference associated with ax-2 7. Its associated inference is mpd 15. (Contributed by NM, 29-Dec-1992.) |
| Ref | Expression |
|---|---|
| a2i.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| a2i | ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | a2i.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | ax-2 7 | . 2 ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-2 7 |
| This theorem is referenced by: mpd 15 imim2i 16 sylcom 30 pm2.43 56 ancl 544 ancr 546 anc2r 554 hbim1 2297 ralimia 3064 ceqsalgALT 3487 rspct 3577 fvmptt 6991 tfi 7832 fnfi 9148 imafiOLD 9272 finsschain 9317 ordiso2 9475 ordtypelem7 9484 dfom3 9607 infdiffi 9618 cantnfp1lem3 9640 cantnf 9653 r1ordg 9738 ttukeylem6 10474 fpwwe2lem7 10597 wunfi 10681 dfnn2 12206 trclfvcotr 14982 psgnunilem3 19433 pgpfac1 20019 fiuncmp 23298 filssufilg 23805 ufileu 23813 dfn0s2 28231 pjnormssi 32104 bnj1110 34979 waj-ax 36409 bj-nnclav 36541 bj-sb 36682 bj-equsal1 36819 bj-equsal2 36820 rdgeqoa 37365 wl-mps 37502 refimssco 43603 dfbi1ALTa 44936 simprimi 44937 natlocalincr 46881 atbiffatnnb 46917 rexrsb 47105 elsetrecslem 49692 |
| Copyright terms: Public domain | W3C validator |