Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rexbidar Structured version   Visualization version   GIF version

Theorem rexbidar 41953
Description: More general form of rexbida 3246. (Contributed by Andrew Salmon, 25-Jul-2011.)
Hypotheses
Ref Expression
ralbidar.1 (𝜑 → ∀𝑥𝐴 𝜑)
ralbidar.2 ((𝜑𝑥𝐴) → (𝜓𝜒))
Assertion
Ref Expression
rexbidar (𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝐴 𝜒))

Proof of Theorem rexbidar
StepHypRef Expression
1 ralbidar.1 . . . . 5 (𝜑 → ∀𝑥𝐴 𝜑)
2 ralbidar.2 . . . . . . 7 ((𝜑𝑥𝐴) → (𝜓𝜒))
32ex 412 . . . . . 6 (𝜑 → (𝑥𝐴 → (𝜓𝜒)))
43ralimi 3086 . . . . 5 (∀𝑥𝐴 𝜑 → ∀𝑥𝐴 (𝑥𝐴 → (𝜓𝜒)))
51, 4syl 17 . . . 4 (𝜑 → ∀𝑥𝐴 (𝑥𝐴 → (𝜓𝜒)))
6 df-ral 3068 . . . 4 (∀𝑥𝐴 (𝑥𝐴 → (𝜓𝜒)) ↔ ∀𝑥(𝑥𝐴 → (𝑥𝐴 → (𝜓𝜒))))
75, 6sylib 217 . . 3 (𝜑 → ∀𝑥(𝑥𝐴 → (𝑥𝐴 → (𝜓𝜒))))
8 pm2.43 56 . . . . 5 ((𝑥𝐴 → (𝑥𝐴 → (𝜓𝜒))) → (𝑥𝐴 → (𝜓𝜒)))
98pm5.32d 576 . . . 4 ((𝑥𝐴 → (𝑥𝐴 → (𝜓𝜒))) → ((𝑥𝐴𝜓) ↔ (𝑥𝐴𝜒)))
109alimi 1815 . . 3 (∀𝑥(𝑥𝐴 → (𝑥𝐴 → (𝜓𝜒))) → ∀𝑥((𝑥𝐴𝜓) ↔ (𝑥𝐴𝜒)))
11 exbi 1850 . . 3 (∀𝑥((𝑥𝐴𝜓) ↔ (𝑥𝐴𝜒)) → (∃𝑥(𝑥𝐴𝜓) ↔ ∃𝑥(𝑥𝐴𝜒)))
127, 10, 113syl 18 . 2 (𝜑 → (∃𝑥(𝑥𝐴𝜓) ↔ ∃𝑥(𝑥𝐴𝜒)))
13 df-rex 3069 . 2 (∃𝑥𝐴 𝜓 ↔ ∃𝑥(𝑥𝐴𝜓))
14 df-rex 3069 . 2 (∃𝑥𝐴 𝜒 ↔ ∃𝑥(𝑥𝐴𝜒))
1512, 13, 143bitr4g 313 1 (𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝐴 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1537  wex 1783  wcel 2108  wral 3063  wrex 3064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-ral 3068  df-rex 3069
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator