![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.43b | Structured version Visualization version GIF version |
Description: Inference absorbing redundant antecedent. (Contributed by NM, 31-Oct-1995.) |
Ref | Expression |
---|---|
pm2.43b.1 | ⊢ (𝜓 → (𝜑 → (𝜓 → 𝜒))) |
Ref | Expression |
---|---|
pm2.43b | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.43b.1 | . . 3 ⊢ (𝜓 → (𝜑 → (𝜓 → 𝜒))) | |
2 | 1 | pm2.43a 54 | . 2 ⊢ (𝜓 → (𝜑 → 𝜒)) |
3 | 2 | com12 32 | 1 ⊢ (𝜑 → (𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: 2eu1 2639 2eu1v 2640 rspcebdv 3601 elpwunsn 4688 trel 5274 preddowncl 6338 predpoirr 6339 predfrirr 6340 funfvima 7240 ordsucss 7820 mapfset 8867 ac10ct 10057 ltaprlem 11067 infrelb 12229 nnmulcl 12266 ico0 13402 ioc0 13403 clwlkclwwlkfo 29875 n4cyclfrgr 30157 chlimi 31100 atcvatlem 32251 rdgssun 36927 eel12131 44217 lidldomn1 47405 |
Copyright terms: Public domain | W3C validator |