MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.43b Structured version   Visualization version   GIF version

Theorem pm2.43b 55
Description: Inference absorbing redundant antecedent. (Contributed by NM, 31-Oct-1995.)
Hypothesis
Ref Expression
pm2.43b.1 (𝜓 → (𝜑 → (𝜓𝜒)))
Assertion
Ref Expression
pm2.43b (𝜑 → (𝜓𝜒))

Proof of Theorem pm2.43b
StepHypRef Expression
1 pm2.43b.1 . . 3 (𝜓 → (𝜑 → (𝜓𝜒)))
21pm2.43a 54 . 2 (𝜓 → (𝜑𝜒))
32com12 32 1 (𝜑 → (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  2eu1  2644  2eu1v  2645  rspcebdv  3605  elpwunsn  4686  trel  5273  preddowncl  6332  predpoirr  6333  predfrirr  6334  funfvima  7233  ordsucss  7808  mapfset  8846  ac10ct  10031  ltaprlem  11041  infrelb  12203  nnmulcl  12240  ico0  13374  ioc0  13375  clwlkclwwlkfo  29529  n4cyclfrgr  29811  chlimi  30754  atcvatlem  31905  rdgssun  36562  eel12131  43776  lidldomn1  46911
  Copyright terms: Public domain W3C validator