![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.43b | Structured version Visualization version GIF version |
Description: Inference absorbing redundant antecedent. (Contributed by NM, 31-Oct-1995.) |
Ref | Expression |
---|---|
pm2.43b.1 | ⊢ (𝜓 → (𝜑 → (𝜓 → 𝜒))) |
Ref | Expression |
---|---|
pm2.43b | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.43b.1 | . . 3 ⊢ (𝜓 → (𝜑 → (𝜓 → 𝜒))) | |
2 | 1 | pm2.43a 54 | . 2 ⊢ (𝜓 → (𝜑 → 𝜒)) |
3 | 2 | com12 32 | 1 ⊢ (𝜑 → (𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: 2eu1 2644 2eu1v 2645 rspcebdv 3605 elpwunsn 4686 trel 5273 preddowncl 6332 predpoirr 6333 predfrirr 6334 funfvima 7233 ordsucss 7808 mapfset 8846 ac10ct 10031 ltaprlem 11041 infrelb 12203 nnmulcl 12240 ico0 13374 ioc0 13375 clwlkclwwlkfo 29529 n4cyclfrgr 29811 chlimi 30754 atcvatlem 31905 rdgssun 36562 eel12131 43776 lidldomn1 46911 |
Copyright terms: Public domain | W3C validator |