| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.43b | Structured version Visualization version GIF version | ||
| Description: Inference absorbing redundant antecedent. (Contributed by NM, 31-Oct-1995.) |
| Ref | Expression |
|---|---|
| pm2.43b.1 | ⊢ (𝜓 → (𝜑 → (𝜓 → 𝜒))) |
| Ref | Expression |
|---|---|
| pm2.43b | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.43b.1 | . . 3 ⊢ (𝜓 → (𝜑 → (𝜓 → 𝜒))) | |
| 2 | 1 | pm2.43a 54 | . 2 ⊢ (𝜓 → (𝜑 → 𝜒)) |
| 3 | 2 | com12 32 | 1 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: 2eu1 2645 2eu1v 2646 rspcebdv 3585 elpwunsn 4651 trel 5226 preddowncl 6308 predpoirr 6309 predfrirr 6310 funfvima 7207 ordsucss 7796 mapfset 8826 ac10ct 9994 ltaprlem 11004 infrelb 12175 nnmulcl 12217 ico0 13359 ioc0 13360 clwlkclwwlkfo 29945 n4cyclfrgr 30227 chlimi 31170 atcvatlem 32321 rdgssun 37373 eel12131 44709 lidldomn1 48223 |
| Copyright terms: Public domain | W3C validator |