![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.43b | Structured version Visualization version GIF version |
Description: Inference absorbing redundant antecedent. (Contributed by NM, 31-Oct-1995.) |
Ref | Expression |
---|---|
pm2.43b.1 | ⊢ (𝜓 → (𝜑 → (𝜓 → 𝜒))) |
Ref | Expression |
---|---|
pm2.43b | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.43b.1 | . . 3 ⊢ (𝜓 → (𝜑 → (𝜓 → 𝜒))) | |
2 | 1 | pm2.43a 54 | . 2 ⊢ (𝜓 → (𝜑 → 𝜒)) |
3 | 2 | com12 32 | 1 ⊢ (𝜑 → (𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: 2eu1 2647 2eu1v 2648 rspcebdv 3607 elpwunsn 4688 trel 5275 preddowncl 6334 predpoirr 6335 predfrirr 6336 funfvima 7232 ordsucss 7806 mapfset 8844 ac10ct 10029 ltaprlem 11039 infrelb 12199 nnmulcl 12236 ico0 13370 ioc0 13371 clwlkclwwlkfo 29262 n4cyclfrgr 29544 chlimi 30487 atcvatlem 31638 rdgssun 36259 eel12131 43474 lidldomn1 46823 |
Copyright terms: Public domain | W3C validator |