MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.43b Structured version   Visualization version   GIF version

Theorem pm2.43b 55
Description: Inference absorbing redundant antecedent. (Contributed by NM, 31-Oct-1995.)
Hypothesis
Ref Expression
pm2.43b.1 (𝜓 → (𝜑 → (𝜓𝜒)))
Assertion
Ref Expression
pm2.43b (𝜑 → (𝜓𝜒))

Proof of Theorem pm2.43b
StepHypRef Expression
1 pm2.43b.1 . . 3 (𝜓 → (𝜑 → (𝜓𝜒)))
21pm2.43a 54 . 2 (𝜓 → (𝜑𝜒))
32com12 32 1 (𝜑 → (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  2eu1  2649  2eu1v  2650  rspcebdv  3616  elpwunsn  4689  trel  5274  preddowncl  6355  predpoirr  6356  predfrirr  6357  funfvima  7250  ordsucss  7838  mapfset  8889  ac10ct  10072  ltaprlem  11082  infrelb  12251  nnmulcl  12288  ico0  13430  ioc0  13431  clwlkclwwlkfo  30038  n4cyclfrgr  30320  chlimi  31263  atcvatlem  32414  rdgssun  37361  eel12131  44711  lidldomn1  48075
  Copyright terms: Public domain W3C validator