![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.43b | Structured version Visualization version GIF version |
Description: Inference absorbing redundant antecedent. (Contributed by NM, 31-Oct-1995.) |
Ref | Expression |
---|---|
pm2.43b.1 | ⊢ (𝜓 → (𝜑 → (𝜓 → 𝜒))) |
Ref | Expression |
---|---|
pm2.43b | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.43b.1 | . . 3 ⊢ (𝜓 → (𝜑 → (𝜓 → 𝜒))) | |
2 | 1 | pm2.43a 54 | . 2 ⊢ (𝜓 → (𝜑 → 𝜒)) |
3 | 2 | com12 32 | 1 ⊢ (𝜑 → (𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: 2eu1 2681 2eu1OLD 2682 rspcebdv 3540 elpwunsn 4496 trel 5038 preddowncl 6015 predpoirr 6016 predfrirr 6017 funfvima 6820 ordsucss 7351 ac10ct 9256 ltaprlem 10266 infrelb 11429 nnmulcl 11466 nnmulclOLD 11467 ico0 12603 ioc0 12604 clwlkclwwlkfoOLD 27522 clwlkclwwlkfo 27526 n4cyclfrgr 27828 chlimi 28793 atcvatlem 29946 rdgssun 34101 eel12131 40466 lidldomn1 43557 |
Copyright terms: Public domain | W3C validator |