| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.43b | Structured version Visualization version GIF version | ||
| Description: Inference absorbing redundant antecedent. (Contributed by NM, 31-Oct-1995.) |
| Ref | Expression |
|---|---|
| pm2.43b.1 | ⊢ (𝜓 → (𝜑 → (𝜓 → 𝜒))) |
| Ref | Expression |
|---|---|
| pm2.43b | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.43b.1 | . . 3 ⊢ (𝜓 → (𝜑 → (𝜓 → 𝜒))) | |
| 2 | 1 | pm2.43a 54 | . 2 ⊢ (𝜓 → (𝜑 → 𝜒)) |
| 3 | 2 | com12 32 | 1 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: 2eu1 2650 2eu1v 2651 rspcebdv 3595 elpwunsn 4660 trel 5238 preddowncl 6321 predpoirr 6322 predfrirr 6323 funfvima 7222 ordsucss 7812 mapfset 8864 ac10ct 10048 ltaprlem 11058 infrelb 12227 nnmulcl 12264 ico0 13408 ioc0 13409 clwlkclwwlkfo 29990 n4cyclfrgr 30272 chlimi 31215 atcvatlem 32366 rdgssun 37396 eel12131 44737 lidldomn1 48206 |
| Copyright terms: Public domain | W3C validator |