| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.43b | Structured version Visualization version GIF version | ||
| Description: Inference absorbing redundant antecedent. (Contributed by NM, 31-Oct-1995.) |
| Ref | Expression |
|---|---|
| pm2.43b.1 | ⊢ (𝜓 → (𝜑 → (𝜓 → 𝜒))) |
| Ref | Expression |
|---|---|
| pm2.43b | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.43b.1 | . . 3 ⊢ (𝜓 → (𝜑 → (𝜓 → 𝜒))) | |
| 2 | 1 | pm2.43a 54 | . 2 ⊢ (𝜓 → (𝜑 → 𝜒)) |
| 3 | 2 | com12 32 | 1 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: 2eu1 2645 2eu1v 2646 rspcebdv 3569 elpwunsn 4635 trel 5204 preddowncl 6275 predpoirr 6276 predfrirr 6277 funfvima 7159 ordsucss 7743 mapfset 8769 ac10ct 9917 ltaprlem 10927 infrelb 12099 nnmulcl 12141 ico0 13283 ioc0 13284 clwlkclwwlkfo 29979 n4cyclfrgr 30261 chlimi 31204 atcvatlem 32355 rdgssun 37391 eel12131 44724 lidldomn1 48241 |
| Copyright terms: Public domain | W3C validator |