| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.43b | Structured version Visualization version GIF version | ||
| Description: Inference absorbing redundant antecedent. (Contributed by NM, 31-Oct-1995.) |
| Ref | Expression |
|---|---|
| pm2.43b.1 | ⊢ (𝜓 → (𝜑 → (𝜓 → 𝜒))) |
| Ref | Expression |
|---|---|
| pm2.43b | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.43b.1 | . . 3 ⊢ (𝜓 → (𝜑 → (𝜓 → 𝜒))) | |
| 2 | 1 | pm2.43a 54 | . 2 ⊢ (𝜓 → (𝜑 → 𝜒)) |
| 3 | 2 | com12 32 | 1 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: 2eu1 2648 2eu1v 2649 rspcebdv 3568 elpwunsn 4638 trel 5210 preddowncl 6287 predpoirr 6288 predfrirr 6289 funfvima 7173 ordsucss 7757 mapfset 8783 ac10ct 9935 ltaprlem 10945 infrelb 12117 nnmulcl 12159 ico0 13301 ioc0 13302 clwlkclwwlkfo 30000 n4cyclfrgr 30282 chlimi 31225 atcvatlem 32376 rdgssun 37433 eel12131 44819 lidldomn1 48345 |
| Copyright terms: Public domain | W3C validator |