Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm2.43b | Structured version Visualization version GIF version |
Description: Inference absorbing redundant antecedent. (Contributed by NM, 31-Oct-1995.) |
Ref | Expression |
---|---|
pm2.43b.1 | ⊢ (𝜓 → (𝜑 → (𝜓 → 𝜒))) |
Ref | Expression |
---|---|
pm2.43b | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.43b.1 | . . 3 ⊢ (𝜓 → (𝜑 → (𝜓 → 𝜒))) | |
2 | 1 | pm2.43a 54 | . 2 ⊢ (𝜓 → (𝜑 → 𝜒)) |
3 | 2 | com12 32 | 1 ⊢ (𝜑 → (𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: 2eu1 2650 2eu1v 2651 rspcebdv 3564 elpwunsn 4632 trel 5219 preddowncl 6272 predpoirr 6273 predfrirr 6274 funfvima 7163 ordsucss 7732 mapfset 8710 ac10ct 9892 ltaprlem 10902 infrelb 12062 nnmulcl 12099 ico0 13227 ioc0 13228 clwlkclwwlkfo 28662 n4cyclfrgr 28944 chlimi 29885 atcvatlem 31036 rdgssun 35705 eel12131 42706 lidldomn1 45897 |
Copyright terms: Public domain | W3C validator |