| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.43b | Structured version Visualization version GIF version | ||
| Description: Inference absorbing redundant antecedent. (Contributed by NM, 31-Oct-1995.) |
| Ref | Expression |
|---|---|
| pm2.43b.1 | ⊢ (𝜓 → (𝜑 → (𝜓 → 𝜒))) |
| Ref | Expression |
|---|---|
| pm2.43b | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.43b.1 | . . 3 ⊢ (𝜓 → (𝜑 → (𝜓 → 𝜒))) | |
| 2 | 1 | pm2.43a 54 | . 2 ⊢ (𝜓 → (𝜑 → 𝜒)) |
| 3 | 2 | com12 32 | 1 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: 2eu1 2644 2eu1v 2645 rspcebdv 3582 elpwunsn 4648 trel 5223 preddowncl 6305 predpoirr 6306 predfrirr 6307 funfvima 7204 ordsucss 7793 mapfset 8823 ac10ct 9987 ltaprlem 10997 infrelb 12168 nnmulcl 12210 ico0 13352 ioc0 13353 clwlkclwwlkfo 29938 n4cyclfrgr 30220 chlimi 31163 atcvatlem 32314 rdgssun 37366 eel12131 44702 lidldomn1 48219 |
| Copyright terms: Public domain | W3C validator |