| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.43b | Structured version Visualization version GIF version | ||
| Description: Inference absorbing redundant antecedent. (Contributed by NM, 31-Oct-1995.) |
| Ref | Expression |
|---|---|
| pm2.43b.1 | ⊢ (𝜓 → (𝜑 → (𝜓 → 𝜒))) |
| Ref | Expression |
|---|---|
| pm2.43b | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.43b.1 | . . 3 ⊢ (𝜓 → (𝜑 → (𝜓 → 𝜒))) | |
| 2 | 1 | pm2.43a 54 | . 2 ⊢ (𝜓 → (𝜑 → 𝜒)) |
| 3 | 2 | com12 32 | 1 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: 2eu1 2644 2eu1v 2645 rspcebdv 3573 elpwunsn 4638 trel 5210 preddowncl 6284 predpoirr 6285 predfrirr 6286 funfvima 7170 ordsucss 7757 mapfset 8784 ac10ct 9947 ltaprlem 10957 infrelb 12128 nnmulcl 12170 ico0 13312 ioc0 13313 clwlkclwwlkfo 29971 n4cyclfrgr 30253 chlimi 31196 atcvatlem 32347 rdgssun 37351 eel12131 44686 lidldomn1 48203 |
| Copyright terms: Public domain | W3C validator |