Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm2.43b | Structured version Visualization version GIF version |
Description: Inference absorbing redundant antecedent. (Contributed by NM, 31-Oct-1995.) |
Ref | Expression |
---|---|
pm2.43b.1 | ⊢ (𝜓 → (𝜑 → (𝜓 → 𝜒))) |
Ref | Expression |
---|---|
pm2.43b | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.43b.1 | . . 3 ⊢ (𝜓 → (𝜑 → (𝜓 → 𝜒))) | |
2 | 1 | pm2.43a 54 | . 2 ⊢ (𝜓 → (𝜑 → 𝜒)) |
3 | 2 | com12 32 | 1 ⊢ (𝜑 → (𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: 2eu1 2653 2eu1v 2654 rspcebdv 3553 elpwunsn 4624 trel 5202 preddowncl 6232 predpoirr 6233 predfrirr 6234 funfvima 7100 ordsucss 7653 mapfset 8612 ac10ct 9774 ltaprlem 10784 infrelb 11943 nnmulcl 11980 ico0 13107 ioc0 13108 clwlkclwwlkfo 28352 n4cyclfrgr 28634 chlimi 29575 atcvatlem 30726 rdgssun 35528 eel12131 42286 lidldomn1 45431 |
Copyright terms: Public domain | W3C validator |