![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.43b | Structured version Visualization version GIF version |
Description: Inference absorbing redundant antecedent. (Contributed by NM, 31-Oct-1995.) |
Ref | Expression |
---|---|
pm2.43b.1 | ⊢ (𝜓 → (𝜑 → (𝜓 → 𝜒))) |
Ref | Expression |
---|---|
pm2.43b | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.43b.1 | . . 3 ⊢ (𝜓 → (𝜑 → (𝜓 → 𝜒))) | |
2 | 1 | pm2.43a 54 | . 2 ⊢ (𝜓 → (𝜑 → 𝜒)) |
3 | 2 | com12 32 | 1 ⊢ (𝜑 → (𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: 2eu1 2654 2eu1v 2655 rspcebdv 3629 elpwunsn 4707 trel 5292 preddowncl 6364 predpoirr 6365 predfrirr 6366 funfvima 7267 ordsucss 7854 mapfset 8908 ac10ct 10103 ltaprlem 11113 infrelb 12280 nnmulcl 12317 ico0 13453 ioc0 13454 clwlkclwwlkfo 30041 n4cyclfrgr 30323 chlimi 31266 atcvatlem 32417 rdgssun 37344 eel12131 44684 lidldomn1 47954 |
Copyright terms: Public domain | W3C validator |