MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.43b Structured version   Visualization version   GIF version

Theorem pm2.43b 55
Description: Inference absorbing redundant antecedent. (Contributed by NM, 31-Oct-1995.)
Hypothesis
Ref Expression
pm2.43b.1 (𝜓 → (𝜑 → (𝜓𝜒)))
Assertion
Ref Expression
pm2.43b (𝜑 → (𝜓𝜒))

Proof of Theorem pm2.43b
StepHypRef Expression
1 pm2.43b.1 . . 3 (𝜓 → (𝜑 → (𝜓𝜒)))
21pm2.43a 54 . 2 (𝜓 → (𝜑𝜒))
32com12 32 1 (𝜑 → (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  2eu1  2639  2eu1v  2640  rspcebdv  3601  elpwunsn  4688  trel  5274  preddowncl  6338  predpoirr  6339  predfrirr  6340  funfvima  7240  ordsucss  7820  mapfset  8867  ac10ct  10057  ltaprlem  11067  infrelb  12229  nnmulcl  12266  ico0  13402  ioc0  13403  clwlkclwwlkfo  29875  n4cyclfrgr  30157  chlimi  31100  atcvatlem  32251  rdgssun  36927  eel12131  44217  lidldomn1  47405
  Copyright terms: Public domain W3C validator