MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.43b Structured version   Visualization version   GIF version

Theorem pm2.43b 55
Description: Inference absorbing redundant antecedent. (Contributed by NM, 31-Oct-1995.)
Hypothesis
Ref Expression
pm2.43b.1 (𝜓 → (𝜑 → (𝜓𝜒)))
Assertion
Ref Expression
pm2.43b (𝜑 → (𝜓𝜒))

Proof of Theorem pm2.43b
StepHypRef Expression
1 pm2.43b.1 . . 3 (𝜓 → (𝜑 → (𝜓𝜒)))
21pm2.43a 54 . 2 (𝜓 → (𝜑𝜒))
32com12 32 1 (𝜑 → (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  2eu1  2641  2eu1v  2642  rspcebdv  3601  elpwunsn  4683  trel  5268  preddowncl  6332  predpoirr  6333  predfrirr  6334  funfvima  7236  ordsucss  7815  mapfset  8860  ac10ct  10049  ltaprlem  11059  infrelb  12221  nnmulcl  12258  ico0  13394  ioc0  13395  clwlkclwwlkfo  29806  n4cyclfrgr  30088  chlimi  31031  atcvatlem  32182  rdgssun  36793  eel12131  44075  lidldomn1  47216
  Copyright terms: Public domain W3C validator