![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.43b | Structured version Visualization version GIF version |
Description: Inference absorbing redundant antecedent. (Contributed by NM, 31-Oct-1995.) |
Ref | Expression |
---|---|
pm2.43b.1 | ⊢ (𝜓 → (𝜑 → (𝜓 → 𝜒))) |
Ref | Expression |
---|---|
pm2.43b | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.43b.1 | . . 3 ⊢ (𝜓 → (𝜑 → (𝜓 → 𝜒))) | |
2 | 1 | pm2.43a 54 | . 2 ⊢ (𝜓 → (𝜑 → 𝜒)) |
3 | 2 | com12 32 | 1 ⊢ (𝜑 → (𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: 2eu1 2641 2eu1v 2642 rspcebdv 3601 elpwunsn 4683 trel 5268 preddowncl 6332 predpoirr 6333 predfrirr 6334 funfvima 7236 ordsucss 7815 mapfset 8860 ac10ct 10049 ltaprlem 11059 infrelb 12221 nnmulcl 12258 ico0 13394 ioc0 13395 clwlkclwwlkfo 29806 n4cyclfrgr 30088 chlimi 31031 atcvatlem 32182 rdgssun 36793 eel12131 44075 lidldomn1 47216 |
Copyright terms: Public domain | W3C validator |