Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm2.43b | Structured version Visualization version GIF version |
Description: Inference absorbing redundant antecedent. (Contributed by NM, 31-Oct-1995.) |
Ref | Expression |
---|---|
pm2.43b.1 | ⊢ (𝜓 → (𝜑 → (𝜓 → 𝜒))) |
Ref | Expression |
---|---|
pm2.43b | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.43b.1 | . . 3 ⊢ (𝜓 → (𝜑 → (𝜓 → 𝜒))) | |
2 | 1 | pm2.43a 54 | . 2 ⊢ (𝜓 → (𝜑 → 𝜒)) |
3 | 2 | com12 32 | 1 ⊢ (𝜑 → (𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: 2eu1 2650 2eu1v 2651 rspcebdv 3560 elpwunsn 4623 trel 5207 preddowncl 6250 predpoirr 6251 predfrirr 6252 funfvima 7138 ordsucss 7697 mapfset 8669 ac10ct 9840 ltaprlem 10850 infrelb 12010 nnmulcl 12047 ico0 13175 ioc0 13176 clwlkclwwlkfo 28422 n4cyclfrgr 28704 chlimi 29645 atcvatlem 30796 rdgssun 35597 eel12131 42546 lidldomn1 45723 |
Copyright terms: Public domain | W3C validator |