![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.43b | Structured version Visualization version GIF version |
Description: Inference absorbing redundant antecedent. (Contributed by NM, 31-Oct-1995.) |
Ref | Expression |
---|---|
pm2.43b.1 | ⊢ (𝜓 → (𝜑 → (𝜓 → 𝜒))) |
Ref | Expression |
---|---|
pm2.43b | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.43b.1 | . . 3 ⊢ (𝜓 → (𝜑 → (𝜓 → 𝜒))) | |
2 | 1 | pm2.43a 54 | . 2 ⊢ (𝜓 → (𝜑 → 𝜒)) |
3 | 2 | com12 32 | 1 ⊢ (𝜑 → (𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: 2eu1 2649 2eu1v 2650 rspcebdv 3616 elpwunsn 4689 trel 5274 preddowncl 6355 predpoirr 6356 predfrirr 6357 funfvima 7250 ordsucss 7838 mapfset 8889 ac10ct 10072 ltaprlem 11082 infrelb 12251 nnmulcl 12288 ico0 13430 ioc0 13431 clwlkclwwlkfo 30038 n4cyclfrgr 30320 chlimi 31263 atcvatlem 32414 rdgssun 37361 eel12131 44711 lidldomn1 48075 |
Copyright terms: Public domain | W3C validator |