MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax13b Structured version   Visualization version   GIF version

Theorem ax13b 2032
Description: An equivalence between two ways of expressing ax-13 2385. See the comment for ax-13 2385. (Contributed by NM, 2-May-2017.) (Proof shortened by Wolf Lammen, 26-Feb-2018.) (Revised by BJ, 15-Sep-2020.)
Assertion
Ref Expression
ax13b ((¬ 𝑥 = 𝑦 → (𝑦 = 𝑧𝜑)) ↔ (¬ 𝑥 = 𝑦 → (¬ 𝑥 = 𝑧 → (𝑦 = 𝑧𝜑))))

Proof of Theorem ax13b
StepHypRef Expression
1 ax-1 6 . . 3 ((𝑦 = 𝑧𝜑) → (¬ 𝑥 = 𝑧 → (𝑦 = 𝑧𝜑)))
2 equeuclr 2023 . . . . . 6 (𝑦 = 𝑧 → (𝑥 = 𝑧𝑥 = 𝑦))
32con3rr3 158 . . . . 5 𝑥 = 𝑦 → (𝑦 = 𝑧 → ¬ 𝑥 = 𝑧))
43imim1d 82 . . . 4 𝑥 = 𝑦 → ((¬ 𝑥 = 𝑧 → (𝑦 = 𝑧𝜑)) → (𝑦 = 𝑧 → (𝑦 = 𝑧𝜑))))
5 pm2.43 56 . . . 4 ((𝑦 = 𝑧 → (𝑦 = 𝑧𝜑)) → (𝑦 = 𝑧𝜑))
64, 5syl6 35 . . 3 𝑥 = 𝑦 → ((¬ 𝑥 = 𝑧 → (𝑦 = 𝑧𝜑)) → (𝑦 = 𝑧𝜑)))
71, 6impbid2 227 . 2 𝑥 = 𝑦 → ((𝑦 = 𝑧𝜑) ↔ (¬ 𝑥 = 𝑧 → (𝑦 = 𝑧𝜑))))
87pm5.74i 272 1 ((¬ 𝑥 = 𝑦 → (𝑦 = 𝑧𝜑)) ↔ (¬ 𝑥 = 𝑦 → (¬ 𝑥 = 𝑧 → (𝑦 = 𝑧𝜑))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008
This theorem depends on definitions:  df-bi 208  df-an 397  df-ex 1774
This theorem is referenced by:  ax13  2388  ax13ALT  2444  ax13fromc9  35909
  Copyright terms: Public domain W3C validator