Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm2.621 | Structured version Visualization version GIF version |
Description: Theorem *2.621 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.) |
Ref | Expression |
---|---|
pm2.621 | ⊢ ((𝜑 → 𝜓) → ((𝜑 ∨ 𝜓) → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜓)) | |
2 | idd 24 | . 2 ⊢ ((𝜑 → 𝜓) → (𝜓 → 𝜓)) | |
3 | 1, 2 | jaod 856 | 1 ⊢ ((𝜑 → 𝜓) → ((𝜑 ∨ 𝜓) → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 845 |
This theorem is referenced by: pm2.62 897 pm4.72 947 pm2.73 971 undif4 4400 elnn1uz2 12665 |
Copyright terms: Public domain | W3C validator |