MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.621 Structured version   Visualization version   GIF version

Theorem pm2.621 896
Description: Theorem *2.621 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm2.621 ((𝜑𝜓) → ((𝜑𝜓) → 𝜓))

Proof of Theorem pm2.621
StepHypRef Expression
1 id 22 . 2 ((𝜑𝜓) → (𝜑𝜓))
2 idd 24 . 2 ((𝜑𝜓) → (𝜓𝜓))
31, 2jaod 856 1 ((𝜑𝜓) → ((𝜑𝜓) → 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 845
This theorem is referenced by:  pm2.62  897  pm4.72  947  pm2.73  971  undif4  4400  elnn1uz2  12665
  Copyright terms: Public domain W3C validator