MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elnn1uz2 Structured version   Visualization version   GIF version

Theorem elnn1uz2 11965
Description: A positive integer is either 1 or greater than or equal to 2. (Contributed by Paul Chapman, 17-Nov-2012.)
Assertion
Ref Expression
elnn1uz2 (𝑁 ∈ ℕ ↔ (𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)))

Proof of Theorem elnn1uz2
StepHypRef Expression
1 eluz2b3 11962 . . 3 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1))
21orbi2i 936 . 2 ((𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)) ↔ (𝑁 = 1 ∨ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1)))
3 exmidne 2946 . . 3 (𝑁 = 1 ∨ 𝑁 ≠ 1)
4 ordi 1028 . . 3 ((𝑁 = 1 ∨ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1)) ↔ ((𝑁 = 1 ∨ 𝑁 ∈ ℕ) ∧ (𝑁 = 1 ∨ 𝑁 ≠ 1)))
53, 4mpbiran2 701 . 2 ((𝑁 = 1 ∨ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1)) ↔ (𝑁 = 1 ∨ 𝑁 ∈ ℕ))
6 1nn 11286 . . . . 5 1 ∈ ℕ
7 eleq1 2831 . . . . 5 (𝑁 = 1 → (𝑁 ∈ ℕ ↔ 1 ∈ ℕ))
86, 7mpbiri 249 . . . 4 (𝑁 = 1 → 𝑁 ∈ ℕ)
9 pm2.621 922 . . . 4 ((𝑁 = 1 → 𝑁 ∈ ℕ) → ((𝑁 = 1 ∨ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ))
108, 9ax-mp 5 . . 3 ((𝑁 = 1 ∨ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
11 olc 894 . . 3 (𝑁 ∈ ℕ → (𝑁 = 1 ∨ 𝑁 ∈ ℕ))
1210, 11impbii 200 . 2 ((𝑁 = 1 ∨ 𝑁 ∈ ℕ) ↔ 𝑁 ∈ ℕ)
132, 5, 123bitrri 289 1 (𝑁 ∈ ℕ ↔ (𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  wo 873   = wceq 1652  wcel 2155  wne 2936  cfv 6067  1c1 10189  cn 11273  2c2 11326  cuz 11885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2349  ax-ext 2742  ax-sep 4940  ax-nul 4948  ax-pow 5000  ax-pr 5061  ax-un 7146  ax-cnex 10244  ax-resscn 10245  ax-1cn 10246  ax-icn 10247  ax-addcl 10248  ax-addrcl 10249  ax-mulcl 10250  ax-mulrcl 10251  ax-mulcom 10252  ax-addass 10253  ax-mulass 10254  ax-distr 10255  ax-i2m1 10256  ax-1ne0 10257  ax-1rid 10258  ax-rnegex 10259  ax-rrecex 10260  ax-cnre 10261  ax-pre-lttri 10262  ax-pre-lttrn 10263  ax-pre-ltadd 10264  ax-pre-mulgt0 10265
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2564  df-eu 2581  df-clab 2751  df-cleq 2757  df-clel 2760  df-nfc 2895  df-ne 2937  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3351  df-sbc 3596  df-csb 3691  df-dif 3734  df-un 3736  df-in 3738  df-ss 3745  df-pss 3747  df-nul 4079  df-if 4243  df-pw 4316  df-sn 4334  df-pr 4336  df-tp 4338  df-op 4340  df-uni 4594  df-iun 4677  df-br 4809  df-opab 4871  df-mpt 4888  df-tr 4911  df-id 5184  df-eprel 5189  df-po 5197  df-so 5198  df-fr 5235  df-we 5237  df-xp 5282  df-rel 5283  df-cnv 5284  df-co 5285  df-dm 5286  df-rn 5287  df-res 5288  df-ima 5289  df-pred 5864  df-ord 5910  df-on 5911  df-lim 5912  df-suc 5913  df-iota 6030  df-fun 6069  df-fn 6070  df-f 6071  df-f1 6072  df-fo 6073  df-f1o 6074  df-fv 6075  df-riota 6802  df-ov 6844  df-oprab 6845  df-mpt2 6846  df-om 7263  df-wrecs 7609  df-recs 7671  df-rdg 7709  df-er 7946  df-en 8160  df-dom 8161  df-sdom 8162  df-pnf 10329  df-mnf 10330  df-xr 10331  df-ltxr 10332  df-le 10333  df-sub 10521  df-neg 10522  df-nn 11274  df-2 11334  df-n0 11538  df-z 11624  df-uz 11886
This theorem is referenced by:  indstr2  11967  fldiv4lem1div2  12845  relexpaddg  14079  dfphi2  15759  pc2dvds  15863  oddprmdvds  15887  prmreclem3  15902  4sqlem18  15946  vdwlem13  15977  efgs1b  18414  efgredlema  18418  ablfacrplem  18730  bposlem2  25300  ostthlem1  25606  ostth  25618  psgnfzto1stlem  30231  subfacval3  31550  jm2.23  38172  expdioph  38199  relexpaddss  38617  stirlinglem12  40871  fmtnofac1  42090  lighneallem2  42131  nn0o1gt2ALTV  42213  ztprmneprm  42726  nn0sumshdiglemB  43015
  Copyright terms: Public domain W3C validator