| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm4.72 | Structured version Visualization version GIF version | ||
| Description: Implication in terms of biconditional and disjunction. Theorem *4.72 of [WhiteheadRussell] p. 121. (Contributed by NM, 30-Aug-1993.) (Proof shortened by Wolf Lammen, 30-Jan-2013.) |
| Ref | Expression |
|---|---|
| pm4.72 | ⊢ ((𝜑 → 𝜓) ↔ (𝜓 ↔ (𝜑 ∨ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | olc 869 | . . 3 ⊢ (𝜓 → (𝜑 ∨ 𝜓)) | |
| 2 | pm2.621 899 | . . 3 ⊢ ((𝜑 → 𝜓) → ((𝜑 ∨ 𝜓) → 𝜓)) | |
| 3 | 1, 2 | impbid2 226 | . 2 ⊢ ((𝜑 → 𝜓) → (𝜓 ↔ (𝜑 ∨ 𝜓))) |
| 4 | orc 868 | . . 3 ⊢ (𝜑 → (𝜑 ∨ 𝜓)) | |
| 5 | biimpr 220 | . . 3 ⊢ ((𝜓 ↔ (𝜑 ∨ 𝜓)) → ((𝜑 ∨ 𝜓) → 𝜓)) | |
| 6 | 4, 5 | syl5 34 | . 2 ⊢ ((𝜓 ↔ (𝜑 ∨ 𝜓)) → (𝜑 → 𝜓)) |
| 7 | 3, 6 | impbii 209 | 1 ⊢ ((𝜑 → 𝜓) ↔ (𝜓 ↔ (𝜑 ∨ 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∨ wo 848 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 849 |
| This theorem is referenced by: bigolden 1029 cadan 1609 ssequn1 4186 ssunsn2 4827 vtxd0nedgb 29506 bj-consensusALT 36580 wl-ifpimpr 37467 elpaddn0 39802 |
| Copyright terms: Public domain | W3C validator |