MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.85 Structured version   Visualization version   GIF version

Theorem pm2.85 930
Description: Theorem *2.85 of [WhiteheadRussell] p. 108. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 5-Jan-2013.)
Assertion
Ref Expression
pm2.85 (((𝜑𝜓) → (𝜑𝜒)) → (𝜑 ∨ (𝜓𝜒)))

Proof of Theorem pm2.85
StepHypRef Expression
1 orimdi 928 . 2 ((𝜑 ∨ (𝜓𝜒)) ↔ ((𝜑𝜓) → (𝜑𝜒)))
21biimpri 227 1 (((𝜑𝜓) → (𝜑𝜒)) → (𝜑 ∨ (𝜓𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 845
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator