|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > orimdi | Structured version Visualization version GIF version | ||
| Description: Disjunction distributes over implication. (Contributed by Wolf Lammen, 5-Jan-2013.) | 
| Ref | Expression | 
|---|---|
| orimdi | ⊢ ((𝜑 ∨ (𝜓 → 𝜒)) ↔ ((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜒))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | imdi 389 | . 2 ⊢ ((¬ 𝜑 → (𝜓 → 𝜒)) ↔ ((¬ 𝜑 → 𝜓) → (¬ 𝜑 → 𝜒))) | |
| 2 | df-or 848 | . 2 ⊢ ((𝜑 ∨ (𝜓 → 𝜒)) ↔ (¬ 𝜑 → (𝜓 → 𝜒))) | |
| 3 | df-or 848 | . . 3 ⊢ ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) | |
| 4 | df-or 848 | . . 3 ⊢ ((𝜑 ∨ 𝜒) ↔ (¬ 𝜑 → 𝜒)) | |
| 5 | 3, 4 | imbi12i 350 | . 2 ⊢ (((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜒)) ↔ ((¬ 𝜑 → 𝜓) → (¬ 𝜑 → 𝜒))) | 
| 6 | 1, 2, 5 | 3bitr4i 303 | 1 ⊢ ((𝜑 ∨ (𝜓 → 𝜒)) ↔ ((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜒))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-or 848 | 
| This theorem is referenced by: pm2.76 931 pm2.85 932 | 
| Copyright terms: Public domain | W3C validator |