Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > orimdi | Structured version Visualization version GIF version |
Description: Disjunction distributes over implication. (Contributed by Wolf Lammen, 5-Jan-2013.) |
Ref | Expression |
---|---|
orimdi | ⊢ ((𝜑 ∨ (𝜓 → 𝜒)) ↔ ((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imdi 390 | . 2 ⊢ ((¬ 𝜑 → (𝜓 → 𝜒)) ↔ ((¬ 𝜑 → 𝜓) → (¬ 𝜑 → 𝜒))) | |
2 | df-or 844 | . 2 ⊢ ((𝜑 ∨ (𝜓 → 𝜒)) ↔ (¬ 𝜑 → (𝜓 → 𝜒))) | |
3 | df-or 844 | . . 3 ⊢ ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) | |
4 | df-or 844 | . . 3 ⊢ ((𝜑 ∨ 𝜒) ↔ (¬ 𝜑 → 𝜒)) | |
5 | 3, 4 | imbi12i 350 | . 2 ⊢ (((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜒)) ↔ ((¬ 𝜑 → 𝜓) → (¬ 𝜑 → 𝜒))) |
6 | 1, 2, 5 | 3bitr4i 302 | 1 ⊢ ((𝜑 ∨ (𝜓 → 𝜒)) ↔ ((𝜑 ∨ 𝜓) → (𝜑 ∨ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∨ wo 843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 844 |
This theorem is referenced by: pm2.76 928 pm2.85 929 |
Copyright terms: Public domain | W3C validator |