MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm5.31r Structured version   Visualization version   GIF version

Theorem pm5.31r 830
Description: Variant of pm5.31 829. (Contributed by Rodolfo Medina, 15-Oct-2010.)
Assertion
Ref Expression
pm5.31r ((𝜒 ∧ (𝜑𝜓)) → (𝜑 → (𝜒𝜓)))

Proof of Theorem pm5.31r
StepHypRef Expression
1 ax-1 6 . 2 (𝜒 → (𝜑𝜒))
2 id 22 . 2 ((𝜑𝜓) → (𝜑𝜓))
31, 2anim12ii 620 1 ((𝜒 ∧ (𝜑𝜓)) → (𝜑 → (𝜒𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400
This theorem is referenced by:  2reuimp  44067
  Copyright terms: Public domain W3C validator