MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm5.31 Structured version   Visualization version   GIF version

Theorem pm5.31 827
Description: Theorem *5.31 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm5.31 ((𝜒 ∧ (𝜑𝜓)) → (𝜑 → (𝜓𝜒)))

Proof of Theorem pm5.31
StepHypRef Expression
1 simpr 484 . 2 ((𝜒 ∧ (𝜑𝜓)) → (𝜑𝜓))
2 simpl 482 . 2 ((𝜒 ∧ (𝜑𝜓)) → 𝜒)
31, 2jctird 526 1 ((𝜒 ∧ (𝜑𝜓)) → (𝜑 → (𝜓𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  bj-bary1lem1  35409
  Copyright terms: Public domain W3C validator