Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2reuimp Structured version   Visualization version   GIF version

Theorem 2reuimp 44494
Description: Implication of a double restricted existential uniqueness in terms of restricted existential quantification and restricted universal quantification if the class of the quantified elements is not empty. (Contributed by AV, 13-Mar-2023.)
Hypotheses
Ref Expression
2reuimp.c (𝑏 = 𝑐 → (𝜑𝜃))
2reuimp.d (𝑎 = 𝑑 → (𝜑𝜒))
2reuimp.a (𝑎 = 𝑑 → (𝜃𝜏))
2reuimp.e (𝑏 = 𝑒 → (𝜑𝜂))
2reuimp.f (𝑐 = 𝑓 → (𝜃𝜓))
Assertion
Ref Expression
2reuimp ((𝑉 ≠ ∅ ∧ ∃!𝑎𝑉 ∃!𝑏𝑉 𝜑) → ∃𝑎𝑉𝑑𝑉𝑏𝑉𝑒𝑉𝑓𝑉𝑐𝑉 ((𝜒 ∧ (𝜏𝑏 = 𝑐)) → (𝜓 → (𝜂 ∧ (𝑎 = 𝑑𝑒 = 𝑓)))))
Distinct variable groups:   𝑉,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓   𝜑,𝑐,𝑑,𝑒   𝜃,𝑏,𝑑,𝑒,𝑓   𝜒,𝑎,𝑒,𝑓   𝜏,𝑎,𝑒,𝑓   𝜂,𝑏,𝑓   𝜓,𝑐   𝜒,𝑐   𝜂,𝑐
Allowed substitution hints:   𝜑(𝑓,𝑎,𝑏)   𝜓(𝑒,𝑓,𝑎,𝑏,𝑑)   𝜒(𝑏,𝑑)   𝜃(𝑎,𝑐)   𝜏(𝑏,𝑐,𝑑)   𝜂(𝑒,𝑎,𝑑)

Proof of Theorem 2reuimp
StepHypRef Expression
1 r19.28zv 4428 . . . . . . . . . . . 12 (𝑉 ≠ ∅ → (∀𝑐𝑉 (𝜒 ∧ (𝜏𝑏 = 𝑐)) ↔ (𝜒 ∧ ∀𝑐𝑉 (𝜏𝑏 = 𝑐))))
21bicomd 222 . . . . . . . . . . 11 (𝑉 ≠ ∅ → ((𝜒 ∧ ∀𝑐𝑉 (𝜏𝑏 = 𝑐)) ↔ ∀𝑐𝑉 (𝜒 ∧ (𝜏𝑏 = 𝑐))))
32imbi1d 341 . . . . . . . . . 10 (𝑉 ≠ ∅ → (((𝜒 ∧ ∀𝑐𝑉 (𝜏𝑏 = 𝑐)) → 𝑎 = 𝑑) ↔ (∀𝑐𝑉 (𝜒 ∧ (𝜏𝑏 = 𝑐)) → 𝑎 = 𝑑)))
4 r19.36zv 4434 . . . . . . . . . . 11 (𝑉 ≠ ∅ → (∃𝑐𝑉 ((𝜒 ∧ (𝜏𝑏 = 𝑐)) → 𝑎 = 𝑑) ↔ (∀𝑐𝑉 (𝜒 ∧ (𝜏𝑏 = 𝑐)) → 𝑎 = 𝑑)))
5 r19.42v 3276 . . . . . . . . . . . . . 14 (∃𝑐𝑉 ((𝜂 ∧ (𝜓𝑒 = 𝑓)) ∧ ((𝜒 ∧ (𝜏𝑏 = 𝑐)) → 𝑎 = 𝑑)) ↔ ((𝜂 ∧ (𝜓𝑒 = 𝑓)) ∧ ∃𝑐𝑉 ((𝜒 ∧ (𝜏𝑏 = 𝑐)) → 𝑎 = 𝑑)))
6 pm5.31r 828 . . . . . . . . . . . . . . . 16 ((𝜂 ∧ (𝜓𝑒 = 𝑓)) → (𝜓 → (𝜂𝑒 = 𝑓)))
7 pm5.31r 828 . . . . . . . . . . . . . . . . 17 (((𝜓 → (𝜂𝑒 = 𝑓)) ∧ ((𝜒 ∧ (𝜏𝑏 = 𝑐)) → 𝑎 = 𝑑)) → ((𝜒 ∧ (𝜏𝑏 = 𝑐)) → ((𝜓 → (𝜂𝑒 = 𝑓)) ∧ 𝑎 = 𝑑)))
8 pm5.31r 828 . . . . . . . . . . . . . . . . . . 19 ((𝑎 = 𝑑 ∧ (𝜓 → (𝜂𝑒 = 𝑓))) → (𝜓 → (𝑎 = 𝑑 ∧ (𝜂𝑒 = 𝑓))))
9 an12 641 . . . . . . . . . . . . . . . . . . 19 ((𝑎 = 𝑑 ∧ (𝜂𝑒 = 𝑓)) ↔ (𝜂 ∧ (𝑎 = 𝑑𝑒 = 𝑓)))
108, 9syl6ib 250 . . . . . . . . . . . . . . . . . 18 ((𝑎 = 𝑑 ∧ (𝜓 → (𝜂𝑒 = 𝑓))) → (𝜓 → (𝜂 ∧ (𝑎 = 𝑑𝑒 = 𝑓))))
1110ancoms 458 . . . . . . . . . . . . . . . . 17 (((𝜓 → (𝜂𝑒 = 𝑓)) ∧ 𝑎 = 𝑑) → (𝜓 → (𝜂 ∧ (𝑎 = 𝑑𝑒 = 𝑓))))
127, 11syl6 35 . . . . . . . . . . . . . . . 16 (((𝜓 → (𝜂𝑒 = 𝑓)) ∧ ((𝜒 ∧ (𝜏𝑏 = 𝑐)) → 𝑎 = 𝑑)) → ((𝜒 ∧ (𝜏𝑏 = 𝑐)) → (𝜓 → (𝜂 ∧ (𝑎 = 𝑑𝑒 = 𝑓)))))
136, 12sylan 579 . . . . . . . . . . . . . . 15 (((𝜂 ∧ (𝜓𝑒 = 𝑓)) ∧ ((𝜒 ∧ (𝜏𝑏 = 𝑐)) → 𝑎 = 𝑑)) → ((𝜒 ∧ (𝜏𝑏 = 𝑐)) → (𝜓 → (𝜂 ∧ (𝑎 = 𝑑𝑒 = 𝑓)))))
1413reximi 3174 . . . . . . . . . . . . . 14 (∃𝑐𝑉 ((𝜂 ∧ (𝜓𝑒 = 𝑓)) ∧ ((𝜒 ∧ (𝜏𝑏 = 𝑐)) → 𝑎 = 𝑑)) → ∃𝑐𝑉 ((𝜒 ∧ (𝜏𝑏 = 𝑐)) → (𝜓 → (𝜂 ∧ (𝑎 = 𝑑𝑒 = 𝑓)))))
155, 14sylbir 234 . . . . . . . . . . . . 13 (((𝜂 ∧ (𝜓𝑒 = 𝑓)) ∧ ∃𝑐𝑉 ((𝜒 ∧ (𝜏𝑏 = 𝑐)) → 𝑎 = 𝑑)) → ∃𝑐𝑉 ((𝜒 ∧ (𝜏𝑏 = 𝑐)) → (𝜓 → (𝜂 ∧ (𝑎 = 𝑑𝑒 = 𝑓)))))
1615expcom 413 . . . . . . . . . . . 12 (∃𝑐𝑉 ((𝜒 ∧ (𝜏𝑏 = 𝑐)) → 𝑎 = 𝑑) → ((𝜂 ∧ (𝜓𝑒 = 𝑓)) → ∃𝑐𝑉 ((𝜒 ∧ (𝜏𝑏 = 𝑐)) → (𝜓 → (𝜂 ∧ (𝑎 = 𝑑𝑒 = 𝑓))))))
1716expd 415 . . . . . . . . . . 11 (∃𝑐𝑉 ((𝜒 ∧ (𝜏𝑏 = 𝑐)) → 𝑎 = 𝑑) → (𝜂 → ((𝜓𝑒 = 𝑓) → ∃𝑐𝑉 ((𝜒 ∧ (𝜏𝑏 = 𝑐)) → (𝜓 → (𝜂 ∧ (𝑎 = 𝑑𝑒 = 𝑓)))))))
184, 17syl6bir 253 . . . . . . . . . 10 (𝑉 ≠ ∅ → ((∀𝑐𝑉 (𝜒 ∧ (𝜏𝑏 = 𝑐)) → 𝑎 = 𝑑) → (𝜂 → ((𝜓𝑒 = 𝑓) → ∃𝑐𝑉 ((𝜒 ∧ (𝜏𝑏 = 𝑐)) → (𝜓 → (𝜂 ∧ (𝑎 = 𝑑𝑒 = 𝑓))))))))
193, 18sylbid 239 . . . . . . . . 9 (𝑉 ≠ ∅ → (((𝜒 ∧ ∀𝑐𝑉 (𝜏𝑏 = 𝑐)) → 𝑎 = 𝑑) → (𝜂 → ((𝜓𝑒 = 𝑓) → ∃𝑐𝑉 ((𝜒 ∧ (𝜏𝑏 = 𝑐)) → (𝜓 → (𝜂 ∧ (𝑎 = 𝑑𝑒 = 𝑓))))))))
2019com23 86 . . . . . . . 8 (𝑉 ≠ ∅ → (𝜂 → (((𝜒 ∧ ∀𝑐𝑉 (𝜏𝑏 = 𝑐)) → 𝑎 = 𝑑) → ((𝜓𝑒 = 𝑓) → ∃𝑐𝑉 ((𝜒 ∧ (𝜏𝑏 = 𝑐)) → (𝜓 → (𝜂 ∧ (𝑎 = 𝑑𝑒 = 𝑓))))))))
2120imp4c 423 . . . . . . 7 (𝑉 ≠ ∅ → (((𝜂 ∧ ((𝜒 ∧ ∀𝑐𝑉 (𝜏𝑏 = 𝑐)) → 𝑎 = 𝑑)) ∧ (𝜓𝑒 = 𝑓)) → ∃𝑐𝑉 ((𝜒 ∧ (𝜏𝑏 = 𝑐)) → (𝜓 → (𝜂 ∧ (𝑎 = 𝑑𝑒 = 𝑓))))))
2221ralimdv 3103 . . . . . 6 (𝑉 ≠ ∅ → (∀𝑓𝑉 ((𝜂 ∧ ((𝜒 ∧ ∀𝑐𝑉 (𝜏𝑏 = 𝑐)) → 𝑎 = 𝑑)) ∧ (𝜓𝑒 = 𝑓)) → ∀𝑓𝑉𝑐𝑉 ((𝜒 ∧ (𝜏𝑏 = 𝑐)) → (𝜓 → (𝜂 ∧ (𝑎 = 𝑑𝑒 = 𝑓))))))
2322reximdv 3201 . . . . 5 (𝑉 ≠ ∅ → (∃𝑒𝑉𝑓𝑉 ((𝜂 ∧ ((𝜒 ∧ ∀𝑐𝑉 (𝜏𝑏 = 𝑐)) → 𝑎 = 𝑑)) ∧ (𝜓𝑒 = 𝑓)) → ∃𝑒𝑉𝑓𝑉𝑐𝑉 ((𝜒 ∧ (𝜏𝑏 = 𝑐)) → (𝜓 → (𝜂 ∧ (𝑎 = 𝑑𝑒 = 𝑓))))))
2423ralimdv 3103 . . . 4 (𝑉 ≠ ∅ → (∀𝑏𝑉𝑒𝑉𝑓𝑉 ((𝜂 ∧ ((𝜒 ∧ ∀𝑐𝑉 (𝜏𝑏 = 𝑐)) → 𝑎 = 𝑑)) ∧ (𝜓𝑒 = 𝑓)) → ∀𝑏𝑉𝑒𝑉𝑓𝑉𝑐𝑉 ((𝜒 ∧ (𝜏𝑏 = 𝑐)) → (𝜓 → (𝜂 ∧ (𝑎 = 𝑑𝑒 = 𝑓))))))
2524ralimdv 3103 . . 3 (𝑉 ≠ ∅ → (∀𝑑𝑉𝑏𝑉𝑒𝑉𝑓𝑉 ((𝜂 ∧ ((𝜒 ∧ ∀𝑐𝑉 (𝜏𝑏 = 𝑐)) → 𝑎 = 𝑑)) ∧ (𝜓𝑒 = 𝑓)) → ∀𝑑𝑉𝑏𝑉𝑒𝑉𝑓𝑉𝑐𝑉 ((𝜒 ∧ (𝜏𝑏 = 𝑐)) → (𝜓 → (𝜂 ∧ (𝑎 = 𝑑𝑒 = 𝑓))))))
2625reximdv 3201 . 2 (𝑉 ≠ ∅ → (∃𝑎𝑉𝑑𝑉𝑏𝑉𝑒𝑉𝑓𝑉 ((𝜂 ∧ ((𝜒 ∧ ∀𝑐𝑉 (𝜏𝑏 = 𝑐)) → 𝑎 = 𝑑)) ∧ (𝜓𝑒 = 𝑓)) → ∃𝑎𝑉𝑑𝑉𝑏𝑉𝑒𝑉𝑓𝑉𝑐𝑉 ((𝜒 ∧ (𝜏𝑏 = 𝑐)) → (𝜓 → (𝜂 ∧ (𝑎 = 𝑑𝑒 = 𝑓))))))
27 2reuimp.c . . 3 (𝑏 = 𝑐 → (𝜑𝜃))
28 2reuimp.d . . 3 (𝑎 = 𝑑 → (𝜑𝜒))
29 2reuimp.a . . 3 (𝑎 = 𝑑 → (𝜃𝜏))
30 2reuimp.e . . 3 (𝑏 = 𝑒 → (𝜑𝜂))
31 2reuimp.f . . 3 (𝑐 = 𝑓 → (𝜃𝜓))
3227, 28, 29, 30, 312reuimp0 44493 . 2 (∃!𝑎𝑉 ∃!𝑏𝑉 𝜑 → ∃𝑎𝑉𝑑𝑉𝑏𝑉𝑒𝑉𝑓𝑉 ((𝜂 ∧ ((𝜒 ∧ ∀𝑐𝑉 (𝜏𝑏 = 𝑐)) → 𝑎 = 𝑑)) ∧ (𝜓𝑒 = 𝑓)))
3326, 32impel 505 1 ((𝑉 ≠ ∅ ∧ ∃!𝑎𝑉 ∃!𝑏𝑉 𝜑) → ∃𝑎𝑉𝑑𝑉𝑏𝑉𝑒𝑉𝑓𝑉𝑐𝑉 ((𝜒 ∧ (𝜏𝑏 = 𝑐)) → (𝜓 → (𝜂 ∧ (𝑎 = 𝑑𝑒 = 𝑓)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wne 2942  wral 3063  wrex 3064  ∃!wreu 3065  c0 4253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-dif 3886  df-nul 4254
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator