Proof of Theorem 2reuimp
Step | Hyp | Ref
| Expression |
1 | | r19.28zv 4428 |
. . . . . . . . . . . 12
⊢ (𝑉 ≠ ∅ →
(∀𝑐 ∈ 𝑉 (𝜒 ∧ (𝜏 → 𝑏 = 𝑐)) ↔ (𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)))) |
2 | 1 | bicomd 222 |
. . . . . . . . . . 11
⊢ (𝑉 ≠ ∅ → ((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) ↔ ∀𝑐 ∈ 𝑉 (𝜒 ∧ (𝜏 → 𝑏 = 𝑐)))) |
3 | 2 | imbi1d 341 |
. . . . . . . . . 10
⊢ (𝑉 ≠ ∅ → (((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑) ↔ (∀𝑐 ∈ 𝑉 (𝜒 ∧ (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑))) |
4 | | r19.36zv 4434 |
. . . . . . . . . . 11
⊢ (𝑉 ≠ ∅ →
(∃𝑐 ∈ 𝑉 ((𝜒 ∧ (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑) ↔ (∀𝑐 ∈ 𝑉 (𝜒 ∧ (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑))) |
5 | | r19.42v 3276 |
. . . . . . . . . . . . . 14
⊢
(∃𝑐 ∈
𝑉 ((𝜂 ∧ (𝜓 → 𝑒 = 𝑓)) ∧ ((𝜒 ∧ (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) ↔ ((𝜂 ∧ (𝜓 → 𝑒 = 𝑓)) ∧ ∃𝑐 ∈ 𝑉 ((𝜒 ∧ (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑))) |
6 | | pm5.31r 828 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜂 ∧ (𝜓 → 𝑒 = 𝑓)) → (𝜓 → (𝜂 ∧ 𝑒 = 𝑓))) |
7 | | pm5.31r 828 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜓 → (𝜂 ∧ 𝑒 = 𝑓)) ∧ ((𝜒 ∧ (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) → ((𝜒 ∧ (𝜏 → 𝑏 = 𝑐)) → ((𝜓 → (𝜂 ∧ 𝑒 = 𝑓)) ∧ 𝑎 = 𝑑))) |
8 | | pm5.31r 828 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑎 = 𝑑 ∧ (𝜓 → (𝜂 ∧ 𝑒 = 𝑓))) → (𝜓 → (𝑎 = 𝑑 ∧ (𝜂 ∧ 𝑒 = 𝑓)))) |
9 | | an12 641 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑎 = 𝑑 ∧ (𝜂 ∧ 𝑒 = 𝑓)) ↔ (𝜂 ∧ (𝑎 = 𝑑 ∧ 𝑒 = 𝑓))) |
10 | 8, 9 | syl6ib 250 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑎 = 𝑑 ∧ (𝜓 → (𝜂 ∧ 𝑒 = 𝑓))) → (𝜓 → (𝜂 ∧ (𝑎 = 𝑑 ∧ 𝑒 = 𝑓)))) |
11 | 10 | ancoms 458 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜓 → (𝜂 ∧ 𝑒 = 𝑓)) ∧ 𝑎 = 𝑑) → (𝜓 → (𝜂 ∧ (𝑎 = 𝑑 ∧ 𝑒 = 𝑓)))) |
12 | 7, 11 | syl6 35 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜓 → (𝜂 ∧ 𝑒 = 𝑓)) ∧ ((𝜒 ∧ (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) → ((𝜒 ∧ (𝜏 → 𝑏 = 𝑐)) → (𝜓 → (𝜂 ∧ (𝑎 = 𝑑 ∧ 𝑒 = 𝑓))))) |
13 | 6, 12 | sylan 579 |
. . . . . . . . . . . . . . 15
⊢ (((𝜂 ∧ (𝜓 → 𝑒 = 𝑓)) ∧ ((𝜒 ∧ (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) → ((𝜒 ∧ (𝜏 → 𝑏 = 𝑐)) → (𝜓 → (𝜂 ∧ (𝑎 = 𝑑 ∧ 𝑒 = 𝑓))))) |
14 | 13 | reximi 3174 |
. . . . . . . . . . . . . 14
⊢
(∃𝑐 ∈
𝑉 ((𝜂 ∧ (𝜓 → 𝑒 = 𝑓)) ∧ ((𝜒 ∧ (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) → ∃𝑐 ∈ 𝑉 ((𝜒 ∧ (𝜏 → 𝑏 = 𝑐)) → (𝜓 → (𝜂 ∧ (𝑎 = 𝑑 ∧ 𝑒 = 𝑓))))) |
15 | 5, 14 | sylbir 234 |
. . . . . . . . . . . . 13
⊢ (((𝜂 ∧ (𝜓 → 𝑒 = 𝑓)) ∧ ∃𝑐 ∈ 𝑉 ((𝜒 ∧ (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) → ∃𝑐 ∈ 𝑉 ((𝜒 ∧ (𝜏 → 𝑏 = 𝑐)) → (𝜓 → (𝜂 ∧ (𝑎 = 𝑑 ∧ 𝑒 = 𝑓))))) |
16 | 15 | expcom 413 |
. . . . . . . . . . . 12
⊢
(∃𝑐 ∈
𝑉 ((𝜒 ∧ (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑) → ((𝜂 ∧ (𝜓 → 𝑒 = 𝑓)) → ∃𝑐 ∈ 𝑉 ((𝜒 ∧ (𝜏 → 𝑏 = 𝑐)) → (𝜓 → (𝜂 ∧ (𝑎 = 𝑑 ∧ 𝑒 = 𝑓)))))) |
17 | 16 | expd 415 |
. . . . . . . . . . 11
⊢
(∃𝑐 ∈
𝑉 ((𝜒 ∧ (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑) → (𝜂 → ((𝜓 → 𝑒 = 𝑓) → ∃𝑐 ∈ 𝑉 ((𝜒 ∧ (𝜏 → 𝑏 = 𝑐)) → (𝜓 → (𝜂 ∧ (𝑎 = 𝑑 ∧ 𝑒 = 𝑓))))))) |
18 | 4, 17 | syl6bir 253 |
. . . . . . . . . 10
⊢ (𝑉 ≠ ∅ →
((∀𝑐 ∈ 𝑉 (𝜒 ∧ (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑) → (𝜂 → ((𝜓 → 𝑒 = 𝑓) → ∃𝑐 ∈ 𝑉 ((𝜒 ∧ (𝜏 → 𝑏 = 𝑐)) → (𝜓 → (𝜂 ∧ (𝑎 = 𝑑 ∧ 𝑒 = 𝑓)))))))) |
19 | 3, 18 | sylbid 239 |
. . . . . . . . 9
⊢ (𝑉 ≠ ∅ → (((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑) → (𝜂 → ((𝜓 → 𝑒 = 𝑓) → ∃𝑐 ∈ 𝑉 ((𝜒 ∧ (𝜏 → 𝑏 = 𝑐)) → (𝜓 → (𝜂 ∧ (𝑎 = 𝑑 ∧ 𝑒 = 𝑓)))))))) |
20 | 19 | com23 86 |
. . . . . . . 8
⊢ (𝑉 ≠ ∅ → (𝜂 → (((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑) → ((𝜓 → 𝑒 = 𝑓) → ∃𝑐 ∈ 𝑉 ((𝜒 ∧ (𝜏 → 𝑏 = 𝑐)) → (𝜓 → (𝜂 ∧ (𝑎 = 𝑑 ∧ 𝑒 = 𝑓)))))))) |
21 | 20 | imp4c 423 |
. . . . . . 7
⊢ (𝑉 ≠ ∅ → (((𝜂 ∧ ((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) ∧ (𝜓 → 𝑒 = 𝑓)) → ∃𝑐 ∈ 𝑉 ((𝜒 ∧ (𝜏 → 𝑏 = 𝑐)) → (𝜓 → (𝜂 ∧ (𝑎 = 𝑑 ∧ 𝑒 = 𝑓)))))) |
22 | 21 | ralimdv 3103 |
. . . . . 6
⊢ (𝑉 ≠ ∅ →
(∀𝑓 ∈ 𝑉 ((𝜂 ∧ ((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) ∧ (𝜓 → 𝑒 = 𝑓)) → ∀𝑓 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ((𝜒 ∧ (𝜏 → 𝑏 = 𝑐)) → (𝜓 → (𝜂 ∧ (𝑎 = 𝑑 ∧ 𝑒 = 𝑓)))))) |
23 | 22 | reximdv 3201 |
. . . . 5
⊢ (𝑉 ≠ ∅ →
(∃𝑒 ∈ 𝑉 ∀𝑓 ∈ 𝑉 ((𝜂 ∧ ((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) ∧ (𝜓 → 𝑒 = 𝑓)) → ∃𝑒 ∈ 𝑉 ∀𝑓 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ((𝜒 ∧ (𝜏 → 𝑏 = 𝑐)) → (𝜓 → (𝜂 ∧ (𝑎 = 𝑑 ∧ 𝑒 = 𝑓)))))) |
24 | 23 | ralimdv 3103 |
. . . 4
⊢ (𝑉 ≠ ∅ →
(∀𝑏 ∈ 𝑉 ∃𝑒 ∈ 𝑉 ∀𝑓 ∈ 𝑉 ((𝜂 ∧ ((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) ∧ (𝜓 → 𝑒 = 𝑓)) → ∀𝑏 ∈ 𝑉 ∃𝑒 ∈ 𝑉 ∀𝑓 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ((𝜒 ∧ (𝜏 → 𝑏 = 𝑐)) → (𝜓 → (𝜂 ∧ (𝑎 = 𝑑 ∧ 𝑒 = 𝑓)))))) |
25 | 24 | ralimdv 3103 |
. . 3
⊢ (𝑉 ≠ ∅ →
(∀𝑑 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ∃𝑒 ∈ 𝑉 ∀𝑓 ∈ 𝑉 ((𝜂 ∧ ((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) ∧ (𝜓 → 𝑒 = 𝑓)) → ∀𝑑 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ∃𝑒 ∈ 𝑉 ∀𝑓 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ((𝜒 ∧ (𝜏 → 𝑏 = 𝑐)) → (𝜓 → (𝜂 ∧ (𝑎 = 𝑑 ∧ 𝑒 = 𝑓)))))) |
26 | 25 | reximdv 3201 |
. 2
⊢ (𝑉 ≠ ∅ →
(∃𝑎 ∈ 𝑉 ∀𝑑 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ∃𝑒 ∈ 𝑉 ∀𝑓 ∈ 𝑉 ((𝜂 ∧ ((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) ∧ (𝜓 → 𝑒 = 𝑓)) → ∃𝑎 ∈ 𝑉 ∀𝑑 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ∃𝑒 ∈ 𝑉 ∀𝑓 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ((𝜒 ∧ (𝜏 → 𝑏 = 𝑐)) → (𝜓 → (𝜂 ∧ (𝑎 = 𝑑 ∧ 𝑒 = 𝑓)))))) |
27 | | 2reuimp.c |
. . 3
⊢ (𝑏 = 𝑐 → (𝜑 ↔ 𝜃)) |
28 | | 2reuimp.d |
. . 3
⊢ (𝑎 = 𝑑 → (𝜑 ↔ 𝜒)) |
29 | | 2reuimp.a |
. . 3
⊢ (𝑎 = 𝑑 → (𝜃 ↔ 𝜏)) |
30 | | 2reuimp.e |
. . 3
⊢ (𝑏 = 𝑒 → (𝜑 ↔ 𝜂)) |
31 | | 2reuimp.f |
. . 3
⊢ (𝑐 = 𝑓 → (𝜃 ↔ 𝜓)) |
32 | 27, 28, 29, 30, 31 | 2reuimp0 44493 |
. 2
⊢
(∃!𝑎 ∈
𝑉 ∃!𝑏 ∈ 𝑉 𝜑 → ∃𝑎 ∈ 𝑉 ∀𝑑 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ∃𝑒 ∈ 𝑉 ∀𝑓 ∈ 𝑉 ((𝜂 ∧ ((𝜒 ∧ ∀𝑐 ∈ 𝑉 (𝜏 → 𝑏 = 𝑐)) → 𝑎 = 𝑑)) ∧ (𝜓 → 𝑒 = 𝑓))) |
33 | 26, 32 | impel 505 |
1
⊢ ((𝑉 ≠ ∅ ∧
∃!𝑎 ∈ 𝑉 ∃!𝑏 ∈ 𝑉 𝜑) → ∃𝑎 ∈ 𝑉 ∀𝑑 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ∃𝑒 ∈ 𝑉 ∀𝑓 ∈ 𝑉 ∃𝑐 ∈ 𝑉 ((𝜒 ∧ (𝜏 → 𝑏 = 𝑐)) → (𝜓 → (𝜂 ∧ (𝑎 = 𝑑 ∧ 𝑒 = 𝑓))))) |