Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  re1tbw3 Structured version   Visualization version   GIF version

Theorem re1tbw3 1749
 Description: tbw-ax3 1704 rederived from merco2 1738. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
re1tbw3 (((𝜑𝜓) → 𝜑) → 𝜑)

Proof of Theorem re1tbw3
StepHypRef Expression
1 mercolem2 1740 . 2 (((𝜑𝜑) → 𝜑) → (𝜑 → (𝜑𝜑)))
2 mercolem2 1740 . . 3 (((𝜑𝜓) → 𝜑) → ((((𝜑𝜑) → 𝜑) → (𝜑 → (𝜑𝜑))) → (((𝜑𝜓) → 𝜑) → 𝜑)))
3 mercolem6 1744 . . 3 ((((𝜑𝜓) → 𝜑) → ((((𝜑𝜑) → 𝜑) → (𝜑 → (𝜑𝜑))) → (((𝜑𝜓) → 𝜑) → 𝜑))) → ((((𝜑𝜑) → 𝜑) → (𝜑 → (𝜑𝜑))) → (((𝜑𝜓) → 𝜑) → 𝜑)))
42, 3ax-mp 5 . 2 ((((𝜑𝜑) → 𝜑) → (𝜑 → (𝜑𝜑))) → (((𝜑𝜓) → 𝜑) → 𝜑))
51, 4ax-mp 5 1 (((𝜑𝜓) → 𝜑) → 𝜑)
 Colors of variables: wff setvar class Syntax hints:   → wi 4 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 210  df-tru 1541  df-fal 1551 This theorem is referenced by:  re1tbw4  1750
 Copyright terms: Public domain W3C validator