| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > re1tbw3 | Structured version Visualization version GIF version | ||
| Description: tbw-ax3 1701 rederived from merco2 1735. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| re1tbw3 | ⊢ (((𝜑 → 𝜓) → 𝜑) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mercolem2 1737 | . 2 ⊢ (((𝜑 → 𝜑) → 𝜑) → (𝜑 → (𝜑 → 𝜑))) | |
| 2 | mercolem2 1737 | . . 3 ⊢ (((𝜑 → 𝜓) → 𝜑) → ((((𝜑 → 𝜑) → 𝜑) → (𝜑 → (𝜑 → 𝜑))) → (((𝜑 → 𝜓) → 𝜑) → 𝜑))) | |
| 3 | mercolem6 1741 | . . 3 ⊢ ((((𝜑 → 𝜓) → 𝜑) → ((((𝜑 → 𝜑) → 𝜑) → (𝜑 → (𝜑 → 𝜑))) → (((𝜑 → 𝜓) → 𝜑) → 𝜑))) → ((((𝜑 → 𝜑) → 𝜑) → (𝜑 → (𝜑 → 𝜑))) → (((𝜑 → 𝜓) → 𝜑) → 𝜑))) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ ((((𝜑 → 𝜑) → 𝜑) → (𝜑 → (𝜑 → 𝜑))) → (((𝜑 → 𝜓) → 𝜑) → 𝜑)) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ (((𝜑 → 𝜓) → 𝜑) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-tru 1542 df-fal 1552 |
| This theorem is referenced by: re1tbw4 1747 |
| Copyright terms: Public domain | W3C validator |