Proof of Theorem re1tbw4
Step | Hyp | Ref
| Expression |
1 | | re1tbw3 1750 |
. . 3
⊢ (((𝜑 → 𝜑) → 𝜑) → 𝜑) |
2 | | re1tbw2 1749 |
. . . 4
⊢ (𝜑 → ((𝜑 → 𝜑) → 𝜑)) |
3 | | re1tbw1 1748 |
. . . 4
⊢ ((𝜑 → ((𝜑 → 𝜑) → 𝜑)) → ((((𝜑 → 𝜑) → 𝜑) → 𝜑) → (𝜑 → 𝜑))) |
4 | 2, 3 | ax-mp 5 |
. . 3
⊢ ((((𝜑 → 𝜑) → 𝜑) → 𝜑) → (𝜑 → 𝜑)) |
5 | 1, 4 | ax-mp 5 |
. 2
⊢ (𝜑 → 𝜑) |
6 | | re1tbw3 1750 |
. . . . 5
⊢
((((⊥ → 𝜑)
→ 𝜑) → (⊥
→ 𝜑)) → (⊥
→ 𝜑)) |
7 | | re1tbw2 1749 |
. . . . . 6
⊢ ((⊥
→ 𝜑) → (((⊥
→ 𝜑) → 𝜑) → (⊥ → 𝜑))) |
8 | | re1tbw1 1748 |
. . . . . 6
⊢ (((⊥
→ 𝜑) → (((⊥
→ 𝜑) → 𝜑) → (⊥ → 𝜑))) → (((((⊥ →
𝜑) → 𝜑) → (⊥ → 𝜑)) → (⊥ → 𝜑)) → ((⊥ → 𝜑) → (⊥ → 𝜑)))) |
9 | 7, 8 | ax-mp 5 |
. . . . 5
⊢
(((((⊥ → 𝜑)
→ 𝜑) → (⊥
→ 𝜑)) → (⊥
→ 𝜑)) → ((⊥
→ 𝜑) → (⊥
→ 𝜑))) |
10 | 6, 9 | ax-mp 5 |
. . . 4
⊢ ((⊥
→ 𝜑) → (⊥
→ 𝜑)) |
11 | | mercolem3 1742 |
. . . . 5
⊢ (((⊥
→ 𝜑) → 𝜑) → ((⊥ → 𝜑) → (⊥ → 𝜑))) |
12 | | merco2 1739 |
. . . . 5
⊢
((((⊥ → 𝜑)
→ 𝜑) → ((⊥
→ 𝜑) → (⊥
→ 𝜑))) → (((⊥
→ 𝜑) → (⊥
→ 𝜑)) → ((𝜑 → 𝜑) → ((𝜑 → 𝜑) → (⊥ → 𝜑))))) |
13 | 11, 12 | ax-mp 5 |
. . . 4
⊢ (((⊥
→ 𝜑) → (⊥
→ 𝜑)) → ((𝜑 → 𝜑) → ((𝜑 → 𝜑) → (⊥ → 𝜑)))) |
14 | 10, 13 | ax-mp 5 |
. . 3
⊢ ((𝜑 → 𝜑) → ((𝜑 → 𝜑) → (⊥ → 𝜑))) |
15 | 5, 14 | ax-mp 5 |
. 2
⊢ ((𝜑 → 𝜑) → (⊥ → 𝜑)) |
16 | 5, 15 | ax-mp 5 |
1
⊢ (⊥
→ 𝜑) |