Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrclsk3 Structured version   Visualization version   GIF version

Theorem ntrclsk3 41569
Description: The intersection of interiors of a every pair is a subset of the interior of the intersection of the pair if an only if the closure of the union of every pair is a subset of the union of closures of the pair. (Contributed by RP, 19-Jun-2021.)
Hypotheses
Ref Expression
ntrcls.o 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))
ntrcls.d 𝐷 = (𝑂𝐵)
ntrcls.r (𝜑𝐼𝐷𝐾)
Assertion
Ref Expression
ntrclsk3 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝐼𝑠) ∩ (𝐼𝑡)) ⊆ (𝐼‘(𝑠𝑡)) ↔ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(𝐾‘(𝑠𝑡)) ⊆ ((𝐾𝑠) ∪ (𝐾𝑡))))
Distinct variable groups:   𝐵,𝑠,𝑡,𝑖,𝑗,𝑘   𝐼,𝑠,𝑡,𝑖,𝑗,𝑘   𝜑,𝑠,𝑡,𝑖,𝑗,𝑘
Allowed substitution hints:   𝐷(𝑡,𝑖,𝑗,𝑘,𝑠)   𝐾(𝑡,𝑖,𝑗,𝑘,𝑠)   𝑂(𝑡,𝑖,𝑗,𝑘,𝑠)

Proof of Theorem ntrclsk3
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6756 . . . . 5 (𝑠 = 𝑎 → (𝐼𝑠) = (𝐼𝑎))
21ineq1d 4142 . . . 4 (𝑠 = 𝑎 → ((𝐼𝑠) ∩ (𝐼𝑡)) = ((𝐼𝑎) ∩ (𝐼𝑡)))
3 ineq1 4136 . . . . 5 (𝑠 = 𝑎 → (𝑠𝑡) = (𝑎𝑡))
43fveq2d 6760 . . . 4 (𝑠 = 𝑎 → (𝐼‘(𝑠𝑡)) = (𝐼‘(𝑎𝑡)))
52, 4sseq12d 3950 . . 3 (𝑠 = 𝑎 → (((𝐼𝑠) ∩ (𝐼𝑡)) ⊆ (𝐼‘(𝑠𝑡)) ↔ ((𝐼𝑎) ∩ (𝐼𝑡)) ⊆ (𝐼‘(𝑎𝑡))))
6 fveq2 6756 . . . . 5 (𝑡 = 𝑏 → (𝐼𝑡) = (𝐼𝑏))
76ineq2d 4143 . . . 4 (𝑡 = 𝑏 → ((𝐼𝑎) ∩ (𝐼𝑡)) = ((𝐼𝑎) ∩ (𝐼𝑏)))
8 ineq2 4137 . . . . 5 (𝑡 = 𝑏 → (𝑎𝑡) = (𝑎𝑏))
98fveq2d 6760 . . . 4 (𝑡 = 𝑏 → (𝐼‘(𝑎𝑡)) = (𝐼‘(𝑎𝑏)))
107, 9sseq12d 3950 . . 3 (𝑡 = 𝑏 → (((𝐼𝑎) ∩ (𝐼𝑡)) ⊆ (𝐼‘(𝑎𝑡)) ↔ ((𝐼𝑎) ∩ (𝐼𝑏)) ⊆ (𝐼‘(𝑎𝑏))))
115, 10cbvral2vw 3385 . 2 (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝐼𝑠) ∩ (𝐼𝑡)) ⊆ (𝐼‘(𝑠𝑡)) ↔ ∀𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵((𝐼𝑎) ∩ (𝐼𝑏)) ⊆ (𝐼‘(𝑎𝑏)))
12 ntrcls.d . . . . . 6 𝐷 = (𝑂𝐵)
13 ntrcls.r . . . . . 6 (𝜑𝐼𝐷𝐾)
1412, 13ntrclsbex 41533 . . . . 5 (𝜑𝐵 ∈ V)
15 difssd 4063 . . . . 5 (𝜑 → (𝐵𝑠) ⊆ 𝐵)
1614, 15sselpwd 5245 . . . 4 (𝜑 → (𝐵𝑠) ∈ 𝒫 𝐵)
1716adantr 480 . . 3 ((𝜑𝑠 ∈ 𝒫 𝐵) → (𝐵𝑠) ∈ 𝒫 𝐵)
18 elpwi 4539 . . . 4 (𝑎 ∈ 𝒫 𝐵𝑎𝐵)
19 simpl 482 . . . . . 6 ((𝐵 ∈ V ∧ 𝑎𝐵) → 𝐵 ∈ V)
20 difssd 4063 . . . . . 6 ((𝐵 ∈ V ∧ 𝑎𝐵) → (𝐵𝑎) ⊆ 𝐵)
2119, 20sselpwd 5245 . . . . 5 ((𝐵 ∈ V ∧ 𝑎𝐵) → (𝐵𝑎) ∈ 𝒫 𝐵)
22 simpr 484 . . . . . . . 8 (((𝐵 ∈ V ∧ 𝑎𝐵) ∧ 𝑠 = (𝐵𝑎)) → 𝑠 = (𝐵𝑎))
2322difeq2d 4053 . . . . . . 7 (((𝐵 ∈ V ∧ 𝑎𝐵) ∧ 𝑠 = (𝐵𝑎)) → (𝐵𝑠) = (𝐵 ∖ (𝐵𝑎)))
2423eqeq2d 2749 . . . . . 6 (((𝐵 ∈ V ∧ 𝑎𝐵) ∧ 𝑠 = (𝐵𝑎)) → (𝑎 = (𝐵𝑠) ↔ 𝑎 = (𝐵 ∖ (𝐵𝑎))))
25 eqcom 2745 . . . . . 6 (𝑎 = (𝐵 ∖ (𝐵𝑎)) ↔ (𝐵 ∖ (𝐵𝑎)) = 𝑎)
2624, 25bitrdi 286 . . . . 5 (((𝐵 ∈ V ∧ 𝑎𝐵) ∧ 𝑠 = (𝐵𝑎)) → (𝑎 = (𝐵𝑠) ↔ (𝐵 ∖ (𝐵𝑎)) = 𝑎))
27 dfss4 4189 . . . . . . 7 (𝑎𝐵 ↔ (𝐵 ∖ (𝐵𝑎)) = 𝑎)
2827biimpi 215 . . . . . 6 (𝑎𝐵 → (𝐵 ∖ (𝐵𝑎)) = 𝑎)
2928adantl 481 . . . . 5 ((𝐵 ∈ V ∧ 𝑎𝐵) → (𝐵 ∖ (𝐵𝑎)) = 𝑎)
3021, 26, 29rspcedvd 3555 . . . 4 ((𝐵 ∈ V ∧ 𝑎𝐵) → ∃𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠))
3114, 18, 30syl2an 595 . . 3 ((𝜑𝑎 ∈ 𝒫 𝐵) → ∃𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠))
32 simpl1 1189 . . . . 5 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵) → 𝜑)
33 difssd 4063 . . . . . 6 (𝜑 → (𝐵𝑡) ⊆ 𝐵)
3414, 33sselpwd 5245 . . . . 5 (𝜑 → (𝐵𝑡) ∈ 𝒫 𝐵)
3532, 34syl 17 . . . 4 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵) → (𝐵𝑡) ∈ 𝒫 𝐵)
36 elpwi 4539 . . . . . 6 (𝑏 ∈ 𝒫 𝐵𝑏𝐵)
37 simpl 482 . . . . . . . 8 ((𝐵 ∈ V ∧ 𝑏𝐵) → 𝐵 ∈ V)
38 difssd 4063 . . . . . . . 8 ((𝐵 ∈ V ∧ 𝑏𝐵) → (𝐵𝑏) ⊆ 𝐵)
3937, 38sselpwd 5245 . . . . . . 7 ((𝐵 ∈ V ∧ 𝑏𝐵) → (𝐵𝑏) ∈ 𝒫 𝐵)
40 simpr 484 . . . . . . . . . 10 (((𝐵 ∈ V ∧ 𝑏𝐵) ∧ 𝑡 = (𝐵𝑏)) → 𝑡 = (𝐵𝑏))
4140difeq2d 4053 . . . . . . . . 9 (((𝐵 ∈ V ∧ 𝑏𝐵) ∧ 𝑡 = (𝐵𝑏)) → (𝐵𝑡) = (𝐵 ∖ (𝐵𝑏)))
4241eqeq2d 2749 . . . . . . . 8 (((𝐵 ∈ V ∧ 𝑏𝐵) ∧ 𝑡 = (𝐵𝑏)) → (𝑏 = (𝐵𝑡) ↔ 𝑏 = (𝐵 ∖ (𝐵𝑏))))
43 eqcom 2745 . . . . . . . 8 (𝑏 = (𝐵 ∖ (𝐵𝑏)) ↔ (𝐵 ∖ (𝐵𝑏)) = 𝑏)
4442, 43bitrdi 286 . . . . . . 7 (((𝐵 ∈ V ∧ 𝑏𝐵) ∧ 𝑡 = (𝐵𝑏)) → (𝑏 = (𝐵𝑡) ↔ (𝐵 ∖ (𝐵𝑏)) = 𝑏))
45 dfss4 4189 . . . . . . . . 9 (𝑏𝐵 ↔ (𝐵 ∖ (𝐵𝑏)) = 𝑏)
4645biimpi 215 . . . . . . . 8 (𝑏𝐵 → (𝐵 ∖ (𝐵𝑏)) = 𝑏)
4746adantl 481 . . . . . . 7 ((𝐵 ∈ V ∧ 𝑏𝐵) → (𝐵 ∖ (𝐵𝑏)) = 𝑏)
4839, 44, 47rspcedvd 3555 . . . . . 6 ((𝐵 ∈ V ∧ 𝑏𝐵) → ∃𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡))
4914, 36, 48syl2an 595 . . . . 5 ((𝜑𝑏 ∈ 𝒫 𝐵) → ∃𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡))
50493ad2antl1 1183 . . . 4 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑏 ∈ 𝒫 𝐵) → ∃𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡))
51 simp13 1203 . . . . . 6 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → 𝑎 = (𝐵𝑠))
52 fveq2 6756 . . . . . . . 8 (𝑎 = (𝐵𝑠) → (𝐼𝑎) = (𝐼‘(𝐵𝑠)))
5352ineq1d 4142 . . . . . . 7 (𝑎 = (𝐵𝑠) → ((𝐼𝑎) ∩ (𝐼𝑏)) = ((𝐼‘(𝐵𝑠)) ∩ (𝐼𝑏)))
54 ineq1 4136 . . . . . . . 8 (𝑎 = (𝐵𝑠) → (𝑎𝑏) = ((𝐵𝑠) ∩ 𝑏))
5554fveq2d 6760 . . . . . . 7 (𝑎 = (𝐵𝑠) → (𝐼‘(𝑎𝑏)) = (𝐼‘((𝐵𝑠) ∩ 𝑏)))
5653, 55sseq12d 3950 . . . . . 6 (𝑎 = (𝐵𝑠) → (((𝐼𝑎) ∩ (𝐼𝑏)) ⊆ (𝐼‘(𝑎𝑏)) ↔ ((𝐼‘(𝐵𝑠)) ∩ (𝐼𝑏)) ⊆ (𝐼‘((𝐵𝑠) ∩ 𝑏))))
5751, 56syl 17 . . . . 5 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → (((𝐼𝑎) ∩ (𝐼𝑏)) ⊆ (𝐼‘(𝑎𝑏)) ↔ ((𝐼‘(𝐵𝑠)) ∩ (𝐼𝑏)) ⊆ (𝐼‘((𝐵𝑠) ∩ 𝑏))))
58 fveq2 6756 . . . . . . . 8 (𝑏 = (𝐵𝑡) → (𝐼𝑏) = (𝐼‘(𝐵𝑡)))
5958ineq2d 4143 . . . . . . 7 (𝑏 = (𝐵𝑡) → ((𝐼‘(𝐵𝑠)) ∩ (𝐼𝑏)) = ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))))
60 ineq2 4137 . . . . . . . . 9 (𝑏 = (𝐵𝑡) → ((𝐵𝑠) ∩ 𝑏) = ((𝐵𝑠) ∩ (𝐵𝑡)))
61 difundi 4210 . . . . . . . . 9 (𝐵 ∖ (𝑠𝑡)) = ((𝐵𝑠) ∩ (𝐵𝑡))
6260, 61eqtr4di 2797 . . . . . . . 8 (𝑏 = (𝐵𝑡) → ((𝐵𝑠) ∩ 𝑏) = (𝐵 ∖ (𝑠𝑡)))
6362fveq2d 6760 . . . . . . 7 (𝑏 = (𝐵𝑡) → (𝐼‘((𝐵𝑠) ∩ 𝑏)) = (𝐼‘(𝐵 ∖ (𝑠𝑡))))
6459, 63sseq12d 3950 . . . . . 6 (𝑏 = (𝐵𝑡) → (((𝐼‘(𝐵𝑠)) ∩ (𝐼𝑏)) ⊆ (𝐼‘((𝐵𝑠) ∩ 𝑏)) ↔ ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))) ⊆ (𝐼‘(𝐵 ∖ (𝑠𝑡)))))
65643ad2ant3 1133 . . . . 5 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → (((𝐼‘(𝐵𝑠)) ∩ (𝐼𝑏)) ⊆ (𝐼‘((𝐵𝑠) ∩ 𝑏)) ↔ ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))) ⊆ (𝐼‘(𝐵 ∖ (𝑠𝑡)))))
66 simp11 1201 . . . . . . . 8 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → 𝜑)
67 ntrcls.o . . . . . . . . . 10 𝑂 = (𝑖 ∈ V ↦ (𝑘 ∈ (𝒫 𝑖m 𝒫 𝑖) ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑖 ∖ (𝑘‘(𝑖𝑗))))))
6867, 12, 13ntrclsiex 41552 . . . . . . . . 9 (𝜑𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵))
6968, 14jca 511 . . . . . . . 8 (𝜑 → (𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵) ∧ 𝐵 ∈ V))
7066, 69syl 17 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → (𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵) ∧ 𝐵 ∈ V))
71 elmapi 8595 . . . . . . . . . . . 12 (𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵) → 𝐼:𝒫 𝐵⟶𝒫 𝐵)
7271adantr 480 . . . . . . . . . . 11 ((𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵) ∧ 𝐵 ∈ V) → 𝐼:𝒫 𝐵⟶𝒫 𝐵)
73 simpr 484 . . . . . . . . . . . 12 ((𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵) ∧ 𝐵 ∈ V) → 𝐵 ∈ V)
74 difssd 4063 . . . . . . . . . . . 12 ((𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵) ∧ 𝐵 ∈ V) → (𝐵𝑠) ⊆ 𝐵)
7573, 74sselpwd 5245 . . . . . . . . . . 11 ((𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵) ∧ 𝐵 ∈ V) → (𝐵𝑠) ∈ 𝒫 𝐵)
7672, 75ffvelrnd 6944 . . . . . . . . . 10 ((𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵) ∧ 𝐵 ∈ V) → (𝐼‘(𝐵𝑠)) ∈ 𝒫 𝐵)
7776elpwid 4541 . . . . . . . . 9 ((𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵) ∧ 𝐵 ∈ V) → (𝐼‘(𝐵𝑠)) ⊆ 𝐵)
78 orc 863 . . . . . . . . 9 ((𝐼‘(𝐵𝑠)) ⊆ 𝐵 → ((𝐼‘(𝐵𝑠)) ⊆ 𝐵 ∨ (𝐼‘(𝐵𝑡)) ⊆ 𝐵))
79 inss 4169 . . . . . . . . 9 (((𝐼‘(𝐵𝑠)) ⊆ 𝐵 ∨ (𝐼‘(𝐵𝑡)) ⊆ 𝐵) → ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))) ⊆ 𝐵)
8077, 78, 793syl 18 . . . . . . . 8 ((𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵) ∧ 𝐵 ∈ V) → ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))) ⊆ 𝐵)
81 difssd 4063 . . . . . . . . . . 11 ((𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵) ∧ 𝐵 ∈ V) → (𝐵 ∖ (𝑠𝑡)) ⊆ 𝐵)
8273, 81sselpwd 5245 . . . . . . . . . 10 ((𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵) ∧ 𝐵 ∈ V) → (𝐵 ∖ (𝑠𝑡)) ∈ 𝒫 𝐵)
8372, 82ffvelrnd 6944 . . . . . . . . 9 ((𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵) ∧ 𝐵 ∈ V) → (𝐼‘(𝐵 ∖ (𝑠𝑡))) ∈ 𝒫 𝐵)
8483elpwid 4541 . . . . . . . 8 ((𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵) ∧ 𝐵 ∈ V) → (𝐼‘(𝐵 ∖ (𝑠𝑡))) ⊆ 𝐵)
8580, 84jca 511 . . . . . . 7 ((𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵) ∧ 𝐵 ∈ V) → (((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))) ⊆ 𝐵 ∧ (𝐼‘(𝐵 ∖ (𝑠𝑡))) ⊆ 𝐵))
86 sscon34b 4225 . . . . . . 7 ((((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))) ⊆ 𝐵 ∧ (𝐼‘(𝐵 ∖ (𝑠𝑡))) ⊆ 𝐵) → (((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))) ⊆ (𝐼‘(𝐵 ∖ (𝑠𝑡))) ↔ (𝐵 ∖ (𝐼‘(𝐵 ∖ (𝑠𝑡)))) ⊆ (𝐵 ∖ ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))))))
8770, 85, 863syl 18 . . . . . 6 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → (((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))) ⊆ (𝐼‘(𝐵 ∖ (𝑠𝑡))) ↔ (𝐵 ∖ (𝐼‘(𝐵 ∖ (𝑠𝑡)))) ⊆ (𝐵 ∖ ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))))))
88 difindi 4212 . . . . . . . 8 (𝐵 ∖ ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡)))) = ((𝐵 ∖ (𝐼‘(𝐵𝑠))) ∪ (𝐵 ∖ (𝐼‘(𝐵𝑡))))
8988sseq2i 3946 . . . . . . 7 ((𝐵 ∖ (𝐼‘(𝐵 ∖ (𝑠𝑡)))) ⊆ (𝐵 ∖ ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡)))) ↔ (𝐵 ∖ (𝐼‘(𝐵 ∖ (𝑠𝑡)))) ⊆ ((𝐵 ∖ (𝐼‘(𝐵𝑠))) ∪ (𝐵 ∖ (𝐼‘(𝐵𝑡)))))
9089a1i 11 . . . . . 6 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → ((𝐵 ∖ (𝐼‘(𝐵 ∖ (𝑠𝑡)))) ⊆ (𝐵 ∖ ((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡)))) ↔ (𝐵 ∖ (𝐼‘(𝐵 ∖ (𝑠𝑡)))) ⊆ ((𝐵 ∖ (𝐼‘(𝐵𝑠))) ∪ (𝐵 ∖ (𝐼‘(𝐵𝑡))))))
9166, 14syl 17 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → 𝐵 ∈ V)
9266, 68syl 17 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → 𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵))
93 simp12 1202 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → 𝑠 ∈ 𝒫 𝐵)
94 rp-simp2 41290 . . . . . . 7 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → 𝑡 ∈ 𝒫 𝐵)
95 simpl2 1190 . . . . . . . . . 10 (((𝜑𝐵 ∈ V ∧ 𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → 𝐵 ∈ V)
96 simpl3 1191 . . . . . . . . . 10 (((𝜑𝐵 ∈ V ∧ 𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → 𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵))
97 eqid 2738 . . . . . . . . . 10 (𝐷𝐼) = (𝐷𝐼)
98 simpl 482 . . . . . . . . . . . 12 ((𝐵 ∈ V ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → 𝐵 ∈ V)
99 simprl 767 . . . . . . . . . . . . . 14 ((𝐵 ∈ V ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → 𝑠 ∈ 𝒫 𝐵)
10099elpwid 4541 . . . . . . . . . . . . 13 ((𝐵 ∈ V ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → 𝑠𝐵)
101 simprr 769 . . . . . . . . . . . . . 14 ((𝐵 ∈ V ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → 𝑡 ∈ 𝒫 𝐵)
102101elpwid 4541 . . . . . . . . . . . . 13 ((𝐵 ∈ V ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → 𝑡𝐵)
103100, 102unssd 4116 . . . . . . . . . . . 12 ((𝐵 ∈ V ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → (𝑠𝑡) ⊆ 𝐵)
10498, 103sselpwd 5245 . . . . . . . . . . 11 ((𝐵 ∈ V ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → (𝑠𝑡) ∈ 𝒫 𝐵)
1051043ad2antl2 1184 . . . . . . . . . 10 (((𝜑𝐵 ∈ V ∧ 𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → (𝑠𝑡) ∈ 𝒫 𝐵)
106 eqid 2738 . . . . . . . . . 10 ((𝐷𝐼)‘(𝑠𝑡)) = ((𝐷𝐼)‘(𝑠𝑡))
10767, 12, 95, 96, 97, 105, 106dssmapfv3d 41516 . . . . . . . . 9 (((𝜑𝐵 ∈ V ∧ 𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → ((𝐷𝐼)‘(𝑠𝑡)) = (𝐵 ∖ (𝐼‘(𝐵 ∖ (𝑠𝑡)))))
108 simpl1 1189 . . . . . . . . . 10 (((𝜑𝐵 ∈ V ∧ 𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → 𝜑)
10967, 12, 13ntrclsfv1 41554 . . . . . . . . . . 11 (𝜑 → (𝐷𝐼) = 𝐾)
110109fveq1d 6758 . . . . . . . . . 10 (𝜑 → ((𝐷𝐼)‘(𝑠𝑡)) = (𝐾‘(𝑠𝑡)))
111108, 110syl 17 . . . . . . . . 9 (((𝜑𝐵 ∈ V ∧ 𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → ((𝐷𝐼)‘(𝑠𝑡)) = (𝐾‘(𝑠𝑡)))
112107, 111eqtr3d 2780 . . . . . . . 8 (((𝜑𝐵 ∈ V ∧ 𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → (𝐵 ∖ (𝐼‘(𝐵 ∖ (𝑠𝑡)))) = (𝐾‘(𝑠𝑡)))
113 simprl 767 . . . . . . . . . . 11 (((𝜑𝐵 ∈ V ∧ 𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → 𝑠 ∈ 𝒫 𝐵)
114 eqid 2738 . . . . . . . . . . 11 ((𝐷𝐼)‘𝑠) = ((𝐷𝐼)‘𝑠)
11567, 12, 95, 96, 97, 113, 114dssmapfv3d 41516 . . . . . . . . . 10 (((𝜑𝐵 ∈ V ∧ 𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → ((𝐷𝐼)‘𝑠) = (𝐵 ∖ (𝐼‘(𝐵𝑠))))
116109fveq1d 6758 . . . . . . . . . . 11 (𝜑 → ((𝐷𝐼)‘𝑠) = (𝐾𝑠))
117108, 116syl 17 . . . . . . . . . 10 (((𝜑𝐵 ∈ V ∧ 𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → ((𝐷𝐼)‘𝑠) = (𝐾𝑠))
118115, 117eqtr3d 2780 . . . . . . . . 9 (((𝜑𝐵 ∈ V ∧ 𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → (𝐵 ∖ (𝐼‘(𝐵𝑠))) = (𝐾𝑠))
119 simprr 769 . . . . . . . . . . 11 (((𝜑𝐵 ∈ V ∧ 𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → 𝑡 ∈ 𝒫 𝐵)
120 eqid 2738 . . . . . . . . . . 11 ((𝐷𝐼)‘𝑡) = ((𝐷𝐼)‘𝑡)
12167, 12, 95, 96, 97, 119, 120dssmapfv3d 41516 . . . . . . . . . 10 (((𝜑𝐵 ∈ V ∧ 𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → ((𝐷𝐼)‘𝑡) = (𝐵 ∖ (𝐼‘(𝐵𝑡))))
122109fveq1d 6758 . . . . . . . . . . 11 (𝜑 → ((𝐷𝐼)‘𝑡) = (𝐾𝑡))
123108, 122syl 17 . . . . . . . . . 10 (((𝜑𝐵 ∈ V ∧ 𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → ((𝐷𝐼)‘𝑡) = (𝐾𝑡))
124121, 123eqtr3d 2780 . . . . . . . . 9 (((𝜑𝐵 ∈ V ∧ 𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → (𝐵 ∖ (𝐼‘(𝐵𝑡))) = (𝐾𝑡))
125118, 124uneq12d 4094 . . . . . . . 8 (((𝜑𝐵 ∈ V ∧ 𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → ((𝐵 ∖ (𝐼‘(𝐵𝑠))) ∪ (𝐵 ∖ (𝐼‘(𝐵𝑡)))) = ((𝐾𝑠) ∪ (𝐾𝑡)))
126112, 125sseq12d 3950 . . . . . . 7 (((𝜑𝐵 ∈ V ∧ 𝐼 ∈ (𝒫 𝐵m 𝒫 𝐵)) ∧ (𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵)) → ((𝐵 ∖ (𝐼‘(𝐵 ∖ (𝑠𝑡)))) ⊆ ((𝐵 ∖ (𝐼‘(𝐵𝑠))) ∪ (𝐵 ∖ (𝐼‘(𝐵𝑡)))) ↔ (𝐾‘(𝑠𝑡)) ⊆ ((𝐾𝑠) ∪ (𝐾𝑡))))
12766, 91, 92, 93, 94, 126syl32anc 1376 . . . . . 6 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → ((𝐵 ∖ (𝐼‘(𝐵 ∖ (𝑠𝑡)))) ⊆ ((𝐵 ∖ (𝐼‘(𝐵𝑠))) ∪ (𝐵 ∖ (𝐼‘(𝐵𝑡)))) ↔ (𝐾‘(𝑠𝑡)) ⊆ ((𝐾𝑠) ∪ (𝐾𝑡))))
12887, 90, 1273bitrd 304 . . . . 5 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → (((𝐼‘(𝐵𝑠)) ∩ (𝐼‘(𝐵𝑡))) ⊆ (𝐼‘(𝐵 ∖ (𝑠𝑡))) ↔ (𝐾‘(𝑠𝑡)) ⊆ ((𝐾𝑠) ∪ (𝐾𝑡))))
12957, 65, 1283bitrd 304 . . . 4 (((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) ∧ 𝑡 ∈ 𝒫 𝐵𝑏 = (𝐵𝑡)) → (((𝐼𝑎) ∩ (𝐼𝑏)) ⊆ (𝐼‘(𝑎𝑏)) ↔ (𝐾‘(𝑠𝑡)) ⊆ ((𝐾𝑠) ∪ (𝐾𝑡))))
13035, 50, 129ralxfrd2 5330 . . 3 ((𝜑𝑠 ∈ 𝒫 𝐵𝑎 = (𝐵𝑠)) → (∀𝑏 ∈ 𝒫 𝐵((𝐼𝑎) ∩ (𝐼𝑏)) ⊆ (𝐼‘(𝑎𝑏)) ↔ ∀𝑡 ∈ 𝒫 𝐵(𝐾‘(𝑠𝑡)) ⊆ ((𝐾𝑠) ∪ (𝐾𝑡))))
13117, 31, 130ralxfrd2 5330 . 2 (𝜑 → (∀𝑎 ∈ 𝒫 𝐵𝑏 ∈ 𝒫 𝐵((𝐼𝑎) ∩ (𝐼𝑏)) ⊆ (𝐼‘(𝑎𝑏)) ↔ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(𝐾‘(𝑠𝑡)) ⊆ ((𝐾𝑠) ∪ (𝐾𝑡))))
13211, 131syl5bb 282 1 (𝜑 → (∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵((𝐼𝑠) ∩ (𝐼𝑡)) ⊆ (𝐼‘(𝑠𝑡)) ↔ ∀𝑠 ∈ 𝒫 𝐵𝑡 ∈ 𝒫 𝐵(𝐾‘(𝑠𝑡)) ⊆ ((𝐾𝑠) ∪ (𝐾𝑡))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064  Vcvv 3422  cdif 3880  cun 3881  cin 3882  wss 3883  𝒫 cpw 4530   class class class wbr 5070  cmpt 5153  wf 6414  cfv 6418  (class class class)co 7255  m cmap 8573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-frege1 41287
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-map 8575
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator