MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbtlem Structured version   Visualization version   GIF version

Theorem sbtlem 2070
Description: In the case of sbt 2071, the hypothesis in df-sb 2068 is derivable from propositional axioms and ax-gen 1796 alone. The essential proof step is presented in this lemma. (Contributed by Wolf Lammen, 4-Feb-2026.)
Hypothesis
Ref Expression
sbtlem.1 𝜑
Assertion
Ref Expression
sbtlem 𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑))

Proof of Theorem sbtlem
StepHypRef Expression
1 sbtlem.1 . . . . 5 𝜑
21a1i 11 . . . 4 (𝑥 = 𝑦𝜑)
32ax-gen 1796 . . 3 𝑥(𝑥 = 𝑦𝜑)
43a1i 11 . 2 (𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑))
54ax-gen 1796 1 𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-gen 1796
This theorem is referenced by:  sbt  2071
  Copyright terms: Public domain W3C validator