MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfsb Structured version   Visualization version   GIF version

Theorem dfsb 2069
Description: Simplify definition df-sb 2068 by removing its provable hypothesis. (Contributed by Wolf Lammen, 5-Feb-2026.)
Assertion
Ref Expression
dfsb ([𝑡 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)))
Distinct variable groups:   𝑥,𝑦   𝑦,𝑡   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑡)

Proof of Theorem dfsb
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sbjust 2066 . 2 (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)) ↔ ∀𝑧(𝑧 = 𝑡 → ∀𝑥(𝑥 = 𝑧𝜑)))
21df-sb 2068 1 ([𝑡 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1539  [wsb 2067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-sb 2068
This theorem is referenced by:  stdpc4  2073  sbi1  2076  spsbe  2087  sbequ  2088  sb6  2090  sbal  2174  hbsbwOLD  2177  sbequ1  2253  sbequ2  2254  dfsb7  2283  sbn  2284  sbrim  2308  cbvsbvf  2365  sb4b  2477  sbequbidv  36269  cbvsbdavw  36309  cbvsbdavw2  36310  bj-ssbeq  36708  bj-ssbid2ALT  36718  bj-ssbid1ALT  36720
  Copyright terms: Public domain W3C validator