| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfsb | Structured version Visualization version GIF version | ||
| Description: Simplify definition df-sb 2068 by removing its provable hypothesis. (Contributed by Wolf Lammen, 5-Feb-2026.) |
| Ref | Expression |
|---|---|
| dfsb | ⊢ ([𝑡 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbjust 2066 | . 2 ⊢ (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) ↔ ∀𝑧(𝑧 = 𝑡 → ∀𝑥(𝑥 = 𝑧 → 𝜑))) | |
| 2 | 1 | df-sb 2068 | 1 ⊢ ([𝑡 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 [wsb 2067 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 |
| This theorem is referenced by: stdpc4 2073 sbi1 2076 spsbe 2087 sbequ 2088 sb6 2090 sbal 2174 hbsbwOLD 2177 sbequ1 2253 sbequ2 2254 dfsb7 2283 sbn 2284 sbrim 2308 cbvsbvf 2365 sb4b 2477 sbequbidv 36269 cbvsbdavw 36309 cbvsbdavw2 36310 bj-ssbeq 36708 bj-ssbid2ALT 36718 bj-ssbid1ALT 36720 |
| Copyright terms: Public domain | W3C validator |