HomeHome Metamath Proof Explorer
Theorem List (p. 21 of 464)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29181)
  Hilbert Space Explorer  Hilbert Space Explorer
(29182-30704)
  Users' Mathboxes  Users' Mathboxes
(30705-46395)
 

Theorem List for Metamath Proof Explorer - 2001-2100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremspvv 2001* Specialization, using implicit substitution. Version of spv 2393 with a disjoint variable condition, which does not require ax-7 2012, ax-12 2173, ax-13 2372. (Contributed by NM, 30-Aug-1993.) (Revised by BJ, 31-May-2019.)
(𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥𝜑𝜓)
 
Theoremspfalw 2002 Version of sp 2178 when 𝜑 is false. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 23-Apr-2017.) (Proof shortened by Wolf Lammen, 25-Dec-2017.)
¬ 𝜑       (∀𝑥𝜑𝜑)
 
Theoremchvarvv 2003* Implicit substitution of 𝑦 for 𝑥 into a theorem. Version of chvarv 2396 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by NM, 20-Apr-1994.) (Revised by BJ, 31-May-2019.)
(𝑥 = 𝑦 → (𝜑𝜓))    &   𝜑       𝜓
 
Theoremequs4v 2004* Version of equs4 2416 with a disjoint variable condition, which requires fewer axioms. (Contributed by NM, 10-May-1993.) (Revised by BJ, 31-May-2019.)
(∀𝑥(𝑥 = 𝑦𝜑) → ∃𝑥(𝑥 = 𝑦𝜑))
 
Theoremalequexv 2005* Version of equs4v 2004 with its consequence simplified by exsimpr 1873. (Contributed by BJ, 9-Nov-2021.)
(∀𝑥(𝑥 = 𝑦𝜑) → ∃𝑥𝜑)
 
Theoremexsbim 2006* One direction of the equivalence in exsb 2357 is based on fewer axioms. (Contributed by Wolf Lammen, 2-Mar-2023.)
(∃𝑦𝑥(𝑥 = 𝑦𝜑) → ∃𝑥𝜑)
 
Theoremequsv 2007* If a formula does not contain a variable 𝑥, then it is equivalent to the corresponding prototype of substitution with a fresh variable (see sb6 2089). (Contributed by BJ, 23-Jul-2023.)
(∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜑)
 
Theoremequsalvw 2008* Version of equsalv 2262 with a disjoint variable condition, and of equsal 2417 with two disjoint variable conditions, which requires fewer axioms. See also the dual form equsexvw 2009. (Contributed by BJ, 31-May-2019.)
(𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)
 
Theoremequsexvw 2009* Version of equsexv 2263 with a disjoint variable condition, and of equsex 2418 with two disjoint variable conditions, which requires fewer axioms. See also the dual form equsalvw 2008. (Contributed by BJ, 31-May-2019.) (Proof shortened by Wolf Lammen, 23-Oct-2023.)
(𝑥 = 𝑦 → (𝜑𝜓))       (∃𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)
 
Theoremcbvaliw 2010* Change bound variable. Uses only Tarski's FOL axiom schemes. Part of Lemma 7 of [KalishMontague] p. 86. (Contributed by NM, 19-Apr-2017.)
(∀𝑥𝜑 → ∀𝑦𝑥𝜑)    &   𝜓 → ∀𝑥 ¬ 𝜓)    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥𝜑 → ∀𝑦𝜓)
 
Theoremcbvalivw 2011* Change bound variable. Uses only Tarski's FOL axiom schemes. Part of Lemma 7 of [KalishMontague] p. 86. (Contributed by NM, 9-Apr-2017.)
(𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥𝜑 → ∀𝑦𝜓)
 
1.4.7  Axiom scheme ax-7 (Equality)
 
Axiomax-7 2012 Axiom of Equality. One of the equality and substitution axioms of predicate calculus with equality. It states that equality is a right-Euclidean binary relation (this is similar, but not identical, to being transitive, which is proved as equtr 2025). This axiom scheme is a sub-scheme of Axiom Scheme B8 of system S2 of [Tarski], p. 75, whose general form cannot be represented with our notation. Also appears as Axiom C7 of [Monk2] p. 105 and Axiom Scheme C8' in [Megill] p. 448 (p. 16 of the preprint).

The equality symbol was invented in 1557 by Robert Recorde. He chose a pair of parallel lines of the same length because "noe .2. thynges, can be moare equalle".

We prove in ax7 2020 that this axiom can be recovered from its weakened version ax7v 2013 where 𝑥 and 𝑦 are assumed to be disjoint variables. In particular, the only theorem referencing ax-7 2012 should be ax7v 2013. See the comment of ax7v 2013 for more details on these matters. (Contributed by NM, 10-Jan-1993.) (Revised by BJ, 7-Dec-2020.) Use ax7 2020 instead. (New usage is discouraged.)

(𝑥 = 𝑦 → (𝑥 = 𝑧𝑦 = 𝑧))
 
Theoremax7v 2013* Weakened version of ax-7 2012, with a disjoint variable condition on 𝑥, 𝑦. This should be the only proof referencing ax-7 2012, and it should be referenced only by its two weakened versions ax7v1 2014 and ax7v2 2015, from which ax-7 2012 is then rederived as ax7 2020, which shows that either ax7v 2013 or the conjunction of ax7v1 2014 and ax7v2 2015 is sufficient.

In ax7v 2013, it is still allowed to substitute the same variable for 𝑥 and 𝑧, or the same variable for 𝑦 and 𝑧. Therefore, ax7v 2013 "bundles" (a term coined by Raph Levien) its "principal instance" (𝑥 = 𝑦 → (𝑥 = 𝑧𝑦 = 𝑧)) with 𝑥, 𝑦, 𝑧 distinct, and its "degenerate instances" (𝑥 = 𝑦 → (𝑥 = 𝑥𝑦 = 𝑥)) and (𝑥 = 𝑦 → (𝑥 = 𝑦𝑦 = 𝑦)) with 𝑥, 𝑦 distinct. These degenerate instances are for instance used in the proofs of equcomiv 2018 and equid 2016 respectively. (Contributed by BJ, 7-Dec-2020.) Use ax7 2020 instead. (New usage is discouraged.)

(𝑥 = 𝑦 → (𝑥 = 𝑧𝑦 = 𝑧))
 
Theoremax7v1 2014* First of two weakened versions of ax7v 2013, with an extra disjoint variable condition on 𝑥, 𝑧, see comments there. (Contributed by BJ, 7-Dec-2020.)
(𝑥 = 𝑦 → (𝑥 = 𝑧𝑦 = 𝑧))
 
Theoremax7v2 2015* Second of two weakened versions of ax7v 2013, with an extra disjoint variable condition on 𝑦, 𝑧, see comments there. (Contributed by BJ, 7-Dec-2020.)
(𝑥 = 𝑦 → (𝑥 = 𝑧𝑦 = 𝑧))
 
Theoremequid 2016 Identity law for equality. Lemma 2 of [KalishMontague] p. 85. See also Lemma 6 of [Tarski] p. 68. (Contributed by NM, 1-Apr-2005.) (Revised by NM, 9-Apr-2017.) (Proof shortened by Wolf Lammen, 22-Aug-2020.)
𝑥 = 𝑥
 
Theoremnfequid 2017 Bound-variable hypothesis builder for 𝑥 = 𝑥. This theorem tells us that any variable, including 𝑥, is effectively not free in 𝑥 = 𝑥, even though 𝑥 is technically free according to the traditional definition of free variable. (Contributed by NM, 13-Jan-2011.) (Revised by NM, 21-Aug-2017.)
𝑦 𝑥 = 𝑥
 
Theoremequcomiv 2018* Weaker form of equcomi 2021 with a disjoint variable condition on 𝑥, 𝑦. This is an intermediate step and equcomi 2021 is fully recovered later. (Contributed by BJ, 7-Dec-2020.)
(𝑥 = 𝑦𝑦 = 𝑥)
 
Theoremax6evr 2019* A commuted form of ax6ev 1974. (Contributed by BJ, 7-Dec-2020.)
𝑥 𝑦 = 𝑥
 
Theoremax7 2020 Proof of ax-7 2012 from ax7v1 2014 and ax7v2 2015 (and earlier axioms), proving sufficiency of the conjunction of the latter two weakened versions of ax7v 2013, which is itself a weakened version of ax-7 2012.

Note that the weakened version of ax-7 2012 obtained by adding a disjoint variable condition on 𝑥, 𝑧 (resp. on 𝑦, 𝑧) does not permit, together with the other axioms, to prove reflexivity (resp. symmetry). (Contributed by BJ, 7-Dec-2020.)

(𝑥 = 𝑦 → (𝑥 = 𝑧𝑦 = 𝑧))
 
Theoremequcomi 2021 Commutative law for equality. Equality is a symmetric relation. Lemma 3 of [KalishMontague] p. 85. See also Lemma 7 of [Tarski] p. 69. (Contributed by NM, 10-Jan-1993.) (Revised by NM, 9-Apr-2017.)
(𝑥 = 𝑦𝑦 = 𝑥)
 
Theoremequcom 2022 Commutative law for equality. Equality is a symmetric relation. (Contributed by NM, 20-Aug-1993.)
(𝑥 = 𝑦𝑦 = 𝑥)
 
Theoremequcomd 2023 Deduction form of equcom 2022, symmetry of equality. For the versions for classes, see eqcom 2745 and eqcomd 2744. (Contributed by BJ, 6-Oct-2019.)
(𝜑𝑥 = 𝑦)       (𝜑𝑦 = 𝑥)
 
Theoremequcoms 2024 An inference commuting equality in antecedent. Used to eliminate the need for a syllogism. (Contributed by NM, 10-Jan-1993.)
(𝑥 = 𝑦𝜑)       (𝑦 = 𝑥𝜑)
 
Theoremequtr 2025 A transitive law for equality. (Contributed by NM, 23-Aug-1993.)
(𝑥 = 𝑦 → (𝑦 = 𝑧𝑥 = 𝑧))
 
Theoremequtrr 2026 A transitive law for equality. Lemma L17 in [Megill] p. 446 (p. 14 of the preprint). (Contributed by NM, 23-Aug-1993.)
(𝑥 = 𝑦 → (𝑧 = 𝑥𝑧 = 𝑦))
 
Theoremequeuclr 2027 Commuted version of equeucl 2028 (equality is left-Euclidean). (Contributed by BJ, 12-Apr-2021.)
(𝑥 = 𝑧 → (𝑦 = 𝑧𝑦 = 𝑥))
 
Theoremequeucl 2028 Equality is a left-Euclidean binary relation. (Right-Euclideanness is stated in ax-7 2012.) Curried (exported) form of equtr2 2031. (Contributed by BJ, 11-Apr-2021.)
(𝑥 = 𝑧 → (𝑦 = 𝑧𝑥 = 𝑦))
 
Theoremequequ1 2029 An equivalence law for equality. (Contributed by NM, 1-Aug-1993.) (Proof shortened by Wolf Lammen, 10-Dec-2017.)
(𝑥 = 𝑦 → (𝑥 = 𝑧𝑦 = 𝑧))
 
Theoremequequ2 2030 An equivalence law for equality. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Wolf Lammen, 4-Aug-2017.) (Proof shortened by BJ, 12-Apr-2021.)
(𝑥 = 𝑦 → (𝑧 = 𝑥𝑧 = 𝑦))
 
Theoremequtr2 2031 Equality is a left-Euclidean binary relation. Uncurried (imported) form of equeucl 2028. (Contributed by NM, 12-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by BJ, 11-Apr-2021.)
((𝑥 = 𝑧𝑦 = 𝑧) → 𝑥 = 𝑦)
 
Theoremstdpc6 2032 One of the two equality axioms of standard predicate calculus, called reflexivity of equality. (The other one is stdpc7 2246.) Axiom 6 of [Mendelson] p. 95. Mendelson doesn't say why he prepended the redundant quantifier, but it was probably to be compatible with free logic (which is valid in the empty domain). (Contributed by NM, 16-Feb-2005.)
𝑥 𝑥 = 𝑥
 
Theoremequvinv 2033* A variable introduction law for equality. Lemma 15 of [Monk2] p. 109. (Contributed by NM, 9-Jan-1993.) Remove dependencies on ax-10 2139, ax-13 2372. (Revised by Wolf Lammen, 10-Jun-2019.) Move the quantified variable (𝑧) to the left of the equality signs. (Revised by Wolf Lammen, 11-Apr-2021.) (Proof shortened by Wolf Lammen, 12-Jul-2022.)
(𝑥 = 𝑦 ↔ ∃𝑧(𝑧 = 𝑥𝑧 = 𝑦))
 
Theoremequvinva 2034* A modified version of the forward implication of equvinv 2033 adapted to common usage. (Contributed by Wolf Lammen, 8-Sep-2018.)
(𝑥 = 𝑦 → ∃𝑧(𝑥 = 𝑧𝑦 = 𝑧))
 
Theoremequvelv 2035* A biconditional form of equvel 2456 with disjoint variable conditions and proved from Tarski's FOL axiom schemes. (Contributed by Andrew Salmon, 2-Jun-2011.) Reduce axiom usage. (Revised by Wolf Lammen, 10-Apr-2021.) (Proof shortened by Wolf Lammen, 12-Jul-2022.)
(∀𝑧(𝑧 = 𝑥𝑧 = 𝑦) ↔ 𝑥 = 𝑦)
 
Theoremax13b 2036 An equivalence between two ways of expressing ax-13 2372. See the comment for ax-13 2372. (Contributed by NM, 2-May-2017.) (Proof shortened by Wolf Lammen, 26-Feb-2018.) (Revised by BJ, 15-Sep-2020.)
((¬ 𝑥 = 𝑦 → (𝑦 = 𝑧𝜑)) ↔ (¬ 𝑥 = 𝑦 → (¬ 𝑥 = 𝑧 → (𝑦 = 𝑧𝜑))))
 
Theoremspfw 2037* Weak version of sp 2178. Uses only Tarski's FOL axiom schemes. Lemma 9 of [KalishMontague] p. 87. This may be the best we can do with minimal distinct variable conditions. (Contributed by NM, 19-Apr-2017.) (Proof shortened by Wolf Lammen, 10-Oct-2021.)
𝜓 → ∀𝑥 ¬ 𝜓)    &   (∀𝑥𝜑 → ∀𝑦𝑥𝜑)    &   𝜑 → ∀𝑦 ¬ 𝜑)    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥𝜑𝜑)
 
Theoremspw 2038* Weak version of the specialization scheme sp 2178. Lemma 9 of [KalishMontague] p. 87. While it appears that sp 2178 in its general form does not follow from Tarski's FOL axiom schemes, from this theorem we can prove any instance of sp 2178 having mutually distinct setvar variables and no wff metavariables (see ax12wdemo 2133 for an example of the procedure to eliminate the hypothesis). Other approximations of sp 2178 are spfw 2037 (minimal distinct variable requirements), spnfw 1984 (when 𝑥 is not free in ¬ 𝜑), spvw 1985 (when 𝑥 does not appear in 𝜑), sptruw 1810 (when 𝜑 is true), spfalw 2002 (when 𝜑 is false), and spvv 2001 (where 𝜑 is changed into 𝜓). (Contributed by NM, 9-Apr-2017.) (Proof shortened by Wolf Lammen, 27-Feb-2018.)
(𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥𝜑𝜑)
 
Theoremcbvalw 2039* Change bound variable. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 9-Apr-2017.)
(∀𝑥𝜑 → ∀𝑦𝑥𝜑)    &   𝜓 → ∀𝑥 ¬ 𝜓)    &   (∀𝑦𝜓 → ∀𝑥𝑦𝜓)    &   𝜑 → ∀𝑦 ¬ 𝜑)    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥𝜑 ↔ ∀𝑦𝜓)
 
Theoremcbvalvw 2040* Change bound variable. Uses only Tarski's FOL axiom schemes. See cbvalv 2400 for a version with fewer disjoint variable conditions but requiring more axioms. (Contributed by NM, 9-Apr-2017.) (Proof shortened by Wolf Lammen, 28-Feb-2018.)
(𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥𝜑 ↔ ∀𝑦𝜓)
 
Theoremcbvexvw 2041* Change bound variable. Uses only Tarski's FOL axiom schemes. See cbvexv 2401 for a version with fewer disjoint variable conditions but requiring more axioms. (Contributed by NM, 19-Apr-2017.)
(𝑥 = 𝑦 → (𝜑𝜓))       (∃𝑥𝜑 ↔ ∃𝑦𝜓)
 
Theoremcbvaldvaw 2042* Rule used to change the bound variable in a universal quantifier with implicit substitution. Deduction form. Version of cbvaldva 2409 with a disjoint variable condition, requiring fewer axioms. (Contributed by David Moews, 1-May-2017.) (Revised by Gino Giotto, 10-Jan-2024.) Reduce axiom usage, along an idea of Gino Giotto. (Revised by Wolf Lammen, 10-Feb-2024.)
((𝜑𝑥 = 𝑦) → (𝜓𝜒))       (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒))
 
Theoremcbvexdvaw 2043* Rule used to change the bound variable in an existential quantifier with implicit substitution. Deduction form. Version of cbvexdva 2410 with a disjoint variable condition, requiring fewer axioms. (Contributed by David Moews, 1-May-2017.) (Revised by Gino Giotto, 10-Jan-2024.) Reduce axiom usage. (Revised by Wolf Lammen, 10-Feb-2024.)
((𝜑𝑥 = 𝑦) → (𝜓𝜒))       (𝜑 → (∃𝑥𝜓 ↔ ∃𝑦𝜒))
 
Theoremcbval2vw 2044* Rule used to change bound variables, using implicit substitution. Version of cbval2vv 2413 with more disjoint variable conditions, which requires fewer axioms . (Contributed by NM, 4-Feb-2005.) (Revised by Gino Giotto, 10-Jan-2024.)
((𝑥 = 𝑧𝑦 = 𝑤) → (𝜑𝜓))       (∀𝑥𝑦𝜑 ↔ ∀𝑧𝑤𝜓)
 
Theoremcbvex2vw 2045* Rule used to change bound variables, using implicit substitution. Version of cbvex2vv 2414 with more disjoint variable conditions, which requires fewer axioms . (Contributed by NM, 26-Jul-1995.) (Revised by Gino Giotto, 10-Jan-2024.)
((𝑥 = 𝑧𝑦 = 𝑤) → (𝜑𝜓))       (∃𝑥𝑦𝜑 ↔ ∃𝑧𝑤𝜓)
 
Theoremcbvex4vw 2046* Rule used to change bound variables, using implicit substitution. Version of cbvex4v 2415 with more disjoint variable conditions, which requires fewer axioms. (Contributed by NM, 26-Jul-1995.) (Revised by Gino Giotto, 10-Jan-2024.)
((𝑥 = 𝑣𝑦 = 𝑢) → (𝜑𝜓))    &   ((𝑧 = 𝑓𝑤 = 𝑔) → (𝜓𝜒))       (∃𝑥𝑦𝑧𝑤𝜑 ↔ ∃𝑣𝑢𝑓𝑔𝜒)
 
Theoremalcomiw 2047* Weak version of alcom 2158. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 10-Apr-2017.) (Proof shortened by Wolf Lammen, 28-Dec-2023.)
(𝑦 = 𝑧 → (𝜑𝜓))       (∀𝑥𝑦𝜑 → ∀𝑦𝑥𝜑)
 
TheoremalcomiwOLD 2048* Obsolete version of alcomiw 2047 as of 28-Dec-2023. (Contributed by NM, 10-Apr-2017.) (Proof shortened by Wolf Lammen, 12-Jul-2022.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝑦 = 𝑧 → (𝜑𝜓))       (∀𝑥𝑦𝜑 → ∀𝑦𝑥𝜑)
 
Theoremhbn1fw 2049* Weak version of ax-10 2139 from which we can prove any ax-10 2139 instance not involving wff variables or bundling. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 19-Apr-2017.) (Proof shortened by Wolf Lammen, 28-Feb-2018.)
(∀𝑥𝜑 → ∀𝑦𝑥𝜑)    &   𝜓 → ∀𝑥 ¬ 𝜓)    &   (∀𝑦𝜓 → ∀𝑥𝑦𝜓)    &   𝜑 → ∀𝑦 ¬ 𝜑)    &   (¬ ∀𝑦𝜓 → ∀𝑥 ¬ ∀𝑦𝜓)    &   (𝑥 = 𝑦 → (𝜑𝜓))       (¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑)
 
Theoremhbn1w 2050* Weak version of hbn1 2140. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 9-Apr-2017.)
(𝑥 = 𝑦 → (𝜑𝜓))       (¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑)
 
Theoremhba1w 2051* Weak version of hba1 2293. See comments for ax10w 2127. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 9-Apr-2017.) (Proof shortened by Wolf Lammen, 10-Oct-2021.)
(𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥𝜑 → ∀𝑥𝑥𝜑)
 
Theoremhbe1w 2052* Weak version of hbe1 2141. See comments for ax10w 2127. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 19-Apr-2017.)
(𝑥 = 𝑦 → (𝜑𝜓))       (∃𝑥𝜑 → ∀𝑥𝑥𝜑)
 
Theoremhbalw 2053* Weak version of hbal 2169. Uses only Tarski's FOL axiom schemes. Unlike hbal 2169, this theorem requires that 𝑥 and 𝑦 be distinct, i.e., not be bundled. (Contributed by NM, 19-Apr-2017.)
(𝑥 = 𝑧 → (𝜑𝜓))    &   (𝜑 → ∀𝑥𝜑)       (∀𝑦𝜑 → ∀𝑥𝑦𝜑)
 
Theorem19.8aw 2054* If a formula is true, then it is true for at least one instance. This is to 19.8a 2176 what spw 2038 is to sp 2178. (Contributed by SN, 26-Sep-2024.)
(𝑥 = 𝑦 → (𝜑𝜓))       (𝜑 → ∃𝑥𝜑)
 
Theoremexexw 2055* Existential quantification over a given variable is idempotent. Weak version of bj-exexbiex 34809, requiring fewer axioms. (Contributed by Gino Giotto, 4-Nov-2024.)
(𝑥 = 𝑦 → (𝜑𝜓))       (∃𝑥𝜑 ↔ ∃𝑥𝑥𝜑)
 
Theoremspaev 2056* A special instance of sp 2178 applied to an equality with a disjoint variable condition. Unlike the more general sp 2178, we can prove this without ax-12 2173. Instance of aeveq 2060.

The antecedent 𝑥𝑥 = 𝑦 with distinct 𝑥 and 𝑦 is a characteristic of a degenerate universe, in which just one object exists. Actually more than one object may still exist, but if so, we give up on equality as a discriminating term.

Separating this degenerate case from a richer universe, where inequality is possible, is a common proof idea. The name of this theorem follows a convention, where the condition 𝑥𝑥 = 𝑦 is denoted by 'aev', a shorthand for 'all equal, with a distinct variable condition'. (Contributed by Wolf Lammen, 14-Mar-2021.)

(∀𝑥 𝑥 = 𝑦𝑥 = 𝑦)
 
Theoremcbvaev 2057* Change bound variable in an equality with a disjoint variable condition. Instance of aev 2061. (Contributed by NM, 22-Jul-2015.) (Revised by BJ, 18-Jun-2019.)
(∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑧 = 𝑦)
 
Theoremaevlem0 2058* Lemma for aevlem 2059. Instance of aev 2061. (Contributed by NM, 8-Jul-2016.) (Proof shortened by Wolf Lammen, 17-Feb-2018.) Remove dependency on ax-12 2173. (Revised by Wolf Lammen, 14-Mar-2021.) (Revised by BJ, 29-Mar-2021.) (Proof shortened by Wolf Lammen, 30-Mar-2021.)
(∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑧 = 𝑥)
 
Theoremaevlem 2059* Lemma for aev 2061 and axc16g 2255. Change free and bound variables. Instance of aev 2061. (Contributed by NM, 22-Jul-2015.) (Proof shortened by Wolf Lammen, 17-Feb-2018.) Remove dependency on ax-13 2372, along an idea of BJ. (Revised by Wolf Lammen, 30-Nov-2019.) (Revised by BJ, 29-Mar-2021.)
(∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑧 = 𝑡)
 
Theoremaeveq 2060* The antecedent 𝑥𝑥 = 𝑦 with a disjoint variable condition (typical of a one-object universe) forces equality of everything. (Contributed by Wolf Lammen, 19-Mar-2021.)
(∀𝑥 𝑥 = 𝑦𝑧 = 𝑡)
 
Theoremaev 2061* A "distinctor elimination" lemma with no disjoint variable conditions on variables in the consequent. (Contributed by NM, 8-Nov-2006.) Remove dependency on ax-11 2156. (Revised by Wolf Lammen, 7-Sep-2018.) Remove dependency on ax-13 2372, inspired by an idea of BJ. (Revised by Wolf Lammen, 30-Nov-2019.) Remove dependency on ax-12 2173. (Revised by Wolf Lammen, 19-Mar-2021.)
(∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑡 = 𝑢)
 
Theoremaev2 2062* A version of aev 2061 with two universal quantifiers in the consequent. One can prove similar statements with arbitrary numbers of universal quantifiers in the consequent (the series begins with aeveq 2060, aev 2061, aev2 2062).

Using aev 2061 and alrimiv 1931, one can actually prove (with no more axioms) any scheme of the form (∀𝑥𝑥 = 𝑦 PHI) , DV (𝑥, 𝑦) where PHI involves only setvar variables and the connectors , , , , , =, , , ∃*, ∃!, . An example is given by aevdemo 28725. This list cannot be extended to ¬ or since the scheme 𝑥𝑥 = 𝑦 is consistent with ax-mp 5, ax-gen 1799, ax-1 6-- ax-13 2372 (as the one-element universe shows), so for instance (∀𝑥𝑥 = 𝑦 → ⊥), DV (𝑥, 𝑦) is not provable from these axioms alone (indeed, dtru 5288 uses non-logical axioms as well). (Contributed by BJ, 23-Mar-2021.)

(∀𝑥 𝑥 = 𝑦 → ∀𝑧𝑡 𝑢 = 𝑣)
 
Theoremhbaev 2063* All variables are effectively bound in an identical variable specifier. Version of hbae 2431 with a disjoint variable condition, requiring fewer axioms. Instance of aev2 2062. (Contributed by NM, 13-May-1993.) (Revised by Wolf Lammen, 22-Mar-2021.)
(∀𝑥 𝑥 = 𝑦 → ∀𝑧𝑥 𝑥 = 𝑦)
 
Theoremnaev 2064* If some set variables can assume different values, then any two distinct set variables cannot always be the same. (Contributed by Wolf Lammen, 10-Aug-2019.)
(¬ ∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑢 𝑢 = 𝑣)
 
Theoremnaev2 2065* Generalization of hbnaev 2066. (Contributed by Wolf Lammen, 9-Apr-2021.)
(¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑧 ¬ ∀𝑡 𝑡 = 𝑢)
 
Theoremhbnaev 2066* Any variable is free in ¬ ∀𝑥𝑥 = 𝑦, if 𝑥 and 𝑦 are distinct. This condition is dropped in hbnae 2432, at the expense of more axiom dependencies. Instance of naev2 2065. (Contributed by NM, 13-May-1993.) (Revised by Wolf Lammen, 9-Apr-2021.)
(¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑧 ¬ ∀𝑥 𝑥 = 𝑦)
 
1.4.8  Define proper substitution
 
Theoremsbjust 2067* Justification theorem for df-sb 2069 proved from Tarski's FOL axiom schemes. (Contributed by BJ, 22-Jan-2023.)
(∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)) ↔ ∀𝑧(𝑧 = 𝑡 → ∀𝑥(𝑥 = 𝑧𝜑)))
 
Syntaxwsb 2068 Extend wff definition to include proper substitution. Read: "the wff that results when 𝑦 is properly substituted for 𝑥 in wff 𝜑". (Contributed by NM, 24-Jan-2006.)
wff [𝑦 / 𝑥]𝜑
 
Definitiondf-sb 2069* Define proper substitution. For our notation, we use [𝑡 / 𝑥]𝜑 to mean "the wff that results from the proper substitution of 𝑡 for 𝑥 in the wff 𝜑". That is, 𝑡 properly replaces 𝑥. For example, [𝑡 / 𝑥]𝑧𝑥 is the same as 𝑧𝑡 (when 𝑥 and 𝑧 are distinct), as shown in elsb2 2125.

Our notation was introduced in Haskell B. Curry's Foundations of Mathematical Logic (1977), p. 316 and is frequently used in textbooks of lambda calculus and combinatory logic. This notation improves the common but ambiguous notation, "𝜑(𝑡) is the wff that results when 𝑡 is properly substituted for 𝑥 in 𝜑(𝑥)". For example, if the original 𝜑(𝑥) is 𝑥 = 𝑡, then 𝜑(𝑡) is 𝑡 = 𝑡, from which we obtain that 𝜑(𝑥) is 𝑥 = 𝑥. So what exactly does 𝜑(𝑥) mean? Curry's notation solves this problem.

A very similar notation, namely (𝑦𝑥)𝜑, was introduced in Bourbaki's Set Theory (Chapter 1, Description of Formal Mathematic, 1953).

In most books, proper substitution has a somewhat complicated recursive definition with multiple cases based on the occurrences of free and bound variables in the wff. Instead, we use a single formula that is exactly equivalent and gives us a direct definition. We later prove that our definition has the properties we expect of proper substitution (see Theorems sbequ 2087, sbcom2 2163 and sbid2v 2513).

Note that our definition is valid even when 𝑥 and 𝑡 are replaced with the same variable, as sbid 2251 shows. We achieve this by applying twice Tarski's definition sb6 2089 which is valid for disjoint variables, and introducing a dummy variable 𝑦 which isolates 𝑥 from 𝑡, as in dfsb7 2279 with respect to sb5 2271. We can also achieve this by having 𝑥 free in the first conjunct and bound in the second, as the alternate definition dfsb1 2485 shows. Another version that mixes free and bound variables is dfsb3 2498. When 𝑥 and 𝑡 are distinct, we can express proper substitution with the simpler expressions of sb5 2271 and sb6 2089.

Note that the occurrences of a given variable in the definiens are either all bound (𝑥, 𝑦) or all free (𝑡). Also note that the definiens uses only primitive symbols.

This double level definition will make several proofs using it appear as doubled. Alternately, one could often first prove as a lemma the same theorem with a disjoint variable condition on the substitute and the substituted variables, and then prove the original theorem by applying this lemma twice in a row. (Contributed by NM, 10-May-1993.) Revised from the original definition dfsb1 2485. (Revised by BJ, 22-Dec-2020.)

([𝑡 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)))
 
Theoremsbt 2070 A substitution into a theorem yields a theorem. See sbtALT 2073 for a shorter proof requiring more axioms. See chvar 2395 and chvarv 2396 for versions using implicit substitution. (Contributed by NM, 21-Jan-2004.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 20-Jul-2018.) Revise df-sb 2069. (Revised by Steven Nguyen, 6-Jul-2023.)
𝜑       [𝑡 / 𝑥]𝜑
 
Theoremsbtru 2071 The result of substituting in the truth constant "true" is true. (Contributed by BJ, 2-Sep-2023.)
[𝑦 / 𝑥]⊤
 
Theoremstdpc4 2072 The specialization axiom of standard predicate calculus. It states that if a statement 𝜑 holds for all 𝑥, then it also holds for the specific case of 𝑡 (properly) substituted for 𝑥. Translated to traditional notation, it can be read: "𝑥𝜑(𝑥) → 𝜑(𝑡), provided that 𝑡 is free for 𝑥 in 𝜑(𝑥)". Axiom 4 of [Mendelson] p. 69. See also spsbc 3724 and rspsbc 3808. (Contributed by NM, 14-May-1993.) Revise df-sb 2069. (Revised by BJ, 22-Dec-2020.)
(∀𝑥𝜑 → [𝑡 / 𝑥]𝜑)
 
TheoremsbtALT 2073 Alternate proof of sbt 2070, shorter but using ax-4 1813 and ax-5 1914. (Contributed by NM, 21-Jan-2004.) (Proof modification is discouraged.) (New usage is discouraged.)
𝜑       [𝑦 / 𝑥]𝜑
 
Theorem2stdpc4 2074 A double specialization using explicit substitution. This is Theorem PM*11.1 in [WhiteheadRussell] p. 159. See stdpc4 2072 for the analogous single specialization. See 2sp 2181 for another double specialization. (Contributed by Andrew Salmon, 24-May-2011.) (Revised by BJ, 21-Oct-2018.)
(∀𝑥𝑦𝜑 → [𝑧 / 𝑥][𝑤 / 𝑦]𝜑)
 
Theoremsbi1 2075 Distribute substitution over implication. (Contributed by NM, 14-May-1993.) Remove dependencies on axioms. (Revised by Steven Nguyen, 24-Jul-2023.)
([𝑦 / 𝑥](𝜑𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓))
 
Theoremspsbim 2076 Distribute substitution over implication. Closed form of sbimi 2078. Specialization of implication. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) Revise df-sb 2069. (Revised by BJ, 22-Dec-2020.) (Proof shortened by Steven Nguyen, 24-Jul-2023.)
(∀𝑥(𝜑𝜓) → ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓))
 
Theoremspsbbi 2077 Biconditional property for substitution. Closed form of sbbii 2080. Specialization of biconditional. (Contributed by NM, 2-Jun-1993.) Revise df-sb 2069. (Revised by BJ, 22-Dec-2020.)
(∀𝑥(𝜑𝜓) → ([𝑡 / 𝑥]𝜑 ↔ [𝑡 / 𝑥]𝜓))
 
Theoremsbimi 2078 Distribute substitution over implication. (Contributed by NM, 25-Jun-1998.) Revise df-sb 2069. (Revised by BJ, 22-Dec-2020.) (Proof shortened by Steven Nguyen, 24-Jul-2023.)
(𝜑𝜓)       ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓)
 
Theoremsb2imi 2079 Distribute substitution over implication. Compare al2imi 1819. (Contributed by Steven Nguyen, 13-Aug-2023.)
(𝜑 → (𝜓𝜒))       ([𝑡 / 𝑥]𝜑 → ([𝑡 / 𝑥]𝜓 → [𝑡 / 𝑥]𝜒))
 
Theoremsbbii 2080 Infer substitution into both sides of a logical equivalence. (Contributed by NM, 14-May-1993.)
(𝜑𝜓)       ([𝑡 / 𝑥]𝜑 ↔ [𝑡 / 𝑥]𝜓)
 
Theorem2sbbii 2081 Infer double substitution into both sides of a logical equivalence. (Contributed by AV, 30-Jul-2023.)
(𝜑𝜓)       ([𝑡 / 𝑥][𝑢 / 𝑦]𝜑 ↔ [𝑡 / 𝑥][𝑢 / 𝑦]𝜓)
 
Theoremsbimdv 2082* Deduction substituting both sides of an implication, with 𝜑 and 𝑥 disjoint. See also sbimd 2240. (Contributed by Wolf Lammen, 6-May-2023.) Revise df-sb 2069. (Revised by Steven Nguyen, 6-Jul-2023.)
(𝜑 → (𝜓𝜒))       (𝜑 → ([𝑡 / 𝑥]𝜓 → [𝑡 / 𝑥]𝜒))
 
Theoremsbbidv 2083* Deduction substituting both sides of a biconditional, with 𝜑 and 𝑥 disjoint. See also sbbid 2241. (Contributed by Wolf Lammen, 6-May-2023.) (Proof shortened by Steven Nguyen, 6-Jul-2023.)
(𝜑 → (𝜓𝜒))       (𝜑 → ([𝑡 / 𝑥]𝜓 ↔ [𝑡 / 𝑥]𝜒))
 
Theoremsban 2084 Conjunction inside and outside of a substitution are equivalent. Compare 19.26 1874. (Contributed by NM, 14-May-1993.) (Proof shortened by Steven Nguyen, 13-Aug-2023.)
([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓))
 
Theoremsb3an 2085 Threefold conjunction inside and outside of a substitution are equivalent. (Contributed by NM, 14-Dec-2006.)
([𝑦 / 𝑥](𝜑𝜓𝜒) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓 ∧ [𝑦 / 𝑥]𝜒))
 
Theoremspsbe 2086 Existential generalization: if a proposition is true for a specific instance, then there exists an instance where it is true. (Contributed by NM, 29-Jun-1993.) (Proof shortened by Wolf Lammen, 3-May-2018.) Revise df-sb 2069. (Revised by BJ, 22-Dec-2020.) (Proof shortened by Steven Nguyen, 11-Jul-2023.)
([𝑡 / 𝑥]𝜑 → ∃𝑥𝜑)
 
Theoremsbequ 2087 Equality property for substitution, from Tarski's system. Used in proof of Theorem 9.7 in [Megill] p. 449 (p. 16 of the preprint). (Contributed by NM, 14-May-1993.) Revise df-sb 2069. (Revised by BJ, 30-Dec-2020.)
(𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 ↔ [𝑦 / 𝑧]𝜑))
 
Theoremsbequi 2088 An equality theorem for substitution. (Contributed by NM, 14-May-1993.) (Proof shortened by Wolf Lammen, 15-Sep-2018.) (Proof shortened by Steven Nguyen, 7-Jul-2023.)
(𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑))
 
Theoremsb6 2089* Alternate definition of substitution when variables are disjoint. Compare Theorem 6.2 of [Quine] p. 40. Also proved as Lemmas 16 and 17 of [Tarski] p. 70. The implication "to the left" also holds without a disjoint variable condition (sb2 2480). Theorem sb6f 2501 replaces the disjoint variable condition with a nonfreeness hypothesis. Theorem sb4b 2475 replaces it with a distinctor antecedent. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Wolf Lammen, 21-Sep-2018.) Revise df-sb 2069. (Revised by BJ, 22-Dec-2020.) Remove use of ax-11 2156. (Revised by Steven Nguyen, 7-Jul-2023.) (Proof shortened by Wolf Lammen, 16-Jul-2023.)
([𝑡 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑡𝜑))
 
Theorem2sb6 2090* Equivalence for double substitution. (Contributed by NM, 3-Feb-2005.)
([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ ∀𝑥𝑦((𝑥 = 𝑧𝑦 = 𝑤) → 𝜑))
 
Theoremsb1v 2091* One direction of sb5 2271, provable from fewer axioms. Version of sb1 2479 with a disjoint variable condition using fewer axioms. (Contributed by NM, 13-May-1993.) (Revised by Wolf Lammen, 20-Jan-2024.)
([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦𝜑))
 
Theoremsbv 2092* Substitution for a variable not occurring in a proposition. See sbf 2266 for a version without disjoint variable condition on 𝑥, 𝜑. If one adds a disjoint variable condition on 𝑥, 𝑡, then sbv 2092 can be proved directly by chaining equsv 2007 with sb6 2089. (Contributed by BJ, 22-Dec-2020.)
([𝑡 / 𝑥]𝜑𝜑)
 
Theoremsbcom4 2093* Commutativity law for substitution. This theorem was incorrectly used as our previous version of pm11.07 2094 but may still be useful. (Contributed by Andrew Salmon, 17-Jun-2011.) (Proof shortened by Jim Kingdon, 22-Jan-2018.)
([𝑤 / 𝑥][𝑦 / 𝑧]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑)
 
Theorempm11.07 2094 Axiom *11.07 in [WhiteheadRussell] p. 159. The original reads: *11.07 "Whatever possible argument 𝑥 may be, 𝜑(𝑥, 𝑦) is true whatever possible argument 𝑦 may be" implies the corresponding statement with 𝑥 and 𝑦 interchanged except in "𝜑(𝑥, 𝑦)". Under our formalism this appears to correspond to idi 1 and not to sbcom4 2093 as earlier thought. See https://groups.google.com/g/metamath/c/iS0fOvSemC8/m/M1zTH8wxCAAJ 2093. (Contributed by BJ, 16-Sep-2018.) (New usage is discouraged.)
𝜑       𝜑
 
Theoremsbrimvlem 2095* Common proof template for sbrimvw 2096 and sbrimv 2305. The hypothesis is an instance of 19.21 2203. (Contributed by Wolf Lammen, 29-Jan-2024.)
(∀𝑥(𝜑 → (𝑥 = 𝑦𝜓)) ↔ (𝜑 → ∀𝑥(𝑥 = 𝑦𝜓)))       ([𝑦 / 𝑥](𝜑𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓))
 
Theoremsbrimvw 2096* Substitution in an implication with a variable not free in the antecedent affects only the consequent. Version of sbrim 2304 and sbrimv 2305 based on fewer axioms, but with more disjoint variable conditions. Based on an idea of Gino Giotto. (Contributed by Wolf Lammen, 29-Jan-2024.)
([𝑦 / 𝑥](𝜑𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓))
 
Theoremsbievw 2097* Conversion of implicit substitution to explicit substitution. Version of sbie 2506 and sbiev 2312 with more disjoint variable conditions, requiring fewer axioms. (Contributed by NM, 30-Jun-1994.) (Revised by BJ, 18-Jul-2023.)
(𝑥 = 𝑦 → (𝜑𝜓))       ([𝑦 / 𝑥]𝜑𝜓)
 
Theoremsbiedvw 2098* Conversion of implicit substitution to explicit substitution (deduction version of sbievw 2097). Version of sbied 2507 and sbiedv 2508 with more disjoint variable conditions, requiring fewer axioms. (Contributed by NM, 30-Jun-1994.) (Revised by Gino Giotto, 29-Jan-2024.)
((𝜑𝑥 = 𝑦) → (𝜓𝜒))       (𝜑 → ([𝑦 / 𝑥]𝜓𝜒))
 
Theorem2sbievw 2099* Conversion of double implicit substitution to explicit substitution. Version of 2sbiev 2509 with more disjoint variable conditions, requiring fewer axioms. (Contributed by AV, 29-Jul-2023.) (Revised by Gino Giotto, 10-Jan-2024.)
((𝑥 = 𝑡𝑦 = 𝑢) → (𝜑𝜓))       ([𝑡 / 𝑥][𝑢 / 𝑦]𝜑𝜓)
 
Theoremsbcom3vv 2100* Substituting 𝑦 for 𝑥 and then 𝑧 for 𝑦 is equivalent to substituting 𝑧 for both 𝑥 and 𝑦. Version of sbcom3 2510 with a disjoint variable condition using fewer axioms. (Contributed by NM, 27-May-1997.) (Revised by Giovanni Mascellani, 8-Apr-2018.) (Revised by BJ, 30-Dec-2020.) (Proof shortened by Wolf Lammen, 19-Jan-2023.)
([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑦][𝑧 / 𝑥]𝜑)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46395
  Copyright terms: Public domain < Previous  Next >