![]() |
Metamath
Proof Explorer Theorem List (p. 21 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30942) |
![]() (30943-32465) |
![]() (32466-48888) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | exsbim 2001* | One direction of the equivalence in exsb 2365 is based on fewer axioms. (Contributed by Wolf Lammen, 2-Mar-2023.) |
⊢ (∃𝑦∀𝑥(𝑥 = 𝑦 → 𝜑) → ∃𝑥𝜑) | ||
Theorem | equsv 2002* | If a formula does not contain a variable 𝑥, then it is equivalent to the corresponding prototype of substitution with a fresh variable (see sb6 2085). (Contributed by BJ, 23-Jul-2023.) |
⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜑) | ||
Theorem | equsalvw 2003* | Version of equsalv 2268 with a disjoint variable condition, and of equsal 2425 with two disjoint variable conditions, which requires fewer axioms. See also the dual form equsexvw 2004. (Contributed by BJ, 31-May-2019.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) | ||
Theorem | equsexvw 2004* | Version of equsexv 2269 with a disjoint variable condition, and of equsex 2426 with two disjoint variable conditions, which requires fewer axioms. See also the dual form equsalvw 2003. (Contributed by BJ, 31-May-2019.) (Proof shortened by Wolf Lammen, 23-Oct-2023.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ 𝜓) | ||
Theorem | cbvaliw 2005* | Change bound variable. Uses only Tarski's FOL axiom schemes. Part of Lemma 7 of [KalishMontague] p. 86. (Contributed by NM, 19-Apr-2017.) |
⊢ (∀𝑥𝜑 → ∀𝑦∀𝑥𝜑) & ⊢ (¬ 𝜓 → ∀𝑥 ¬ 𝜓) & ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) ⇒ ⊢ (∀𝑥𝜑 → ∀𝑦𝜓) | ||
Theorem | cbvalivw 2006* | Change bound variable. Uses only Tarski's FOL axiom schemes. Part of Lemma 7 of [KalishMontague] p. 86. (Contributed by NM, 9-Apr-2017.) |
⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) ⇒ ⊢ (∀𝑥𝜑 → ∀𝑦𝜓) | ||
Axiom | ax-7 2007 |
Axiom of Equality. One of the equality and substitution axioms of
predicate calculus with equality. It states that equality is a
right-Euclidean binary relation (this is similar, but not identical, to
being transitive, which is proved as equtr 2020). This axiom scheme is a
sub-scheme of Axiom Scheme B8 of system S2 of [Tarski], p. 75, whose
general form cannot be represented with our notation. Also appears as
Axiom C7 of [Monk2] p. 105 and Axiom Scheme
C8' in [Megill] p. 448 (p. 16
of the preprint).
The equality symbol was invented in 1557 by Robert Recorde. He chose a pair of parallel lines of the same length because "noe .2. thynges, can be moare equalle". We prove in ax7 2015 that this axiom can be recovered from its weakened version ax7v 2008 where 𝑥 and 𝑦 are assumed to be disjoint variables. In particular, the only theorem referencing ax-7 2007 should be ax7v 2008. See the comment of ax7v 2008 for more details on these matters. (Contributed by NM, 10-Jan-1993.) (Revised by BJ, 7-Dec-2020.) Use ax7 2015 instead. (New usage is discouraged.) |
⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 → 𝑦 = 𝑧)) | ||
Theorem | ax7v 2008* |
Weakened version of ax-7 2007, with a disjoint variable condition on
𝑥,
𝑦. This should be
the only proof referencing ax-7 2007, and it
should be referenced only by its two weakened versions ax7v1 2009 and
ax7v2 2010, from which ax-7 2007
is then rederived as ax7 2015, which shows
that either ax7v 2008 or the conjunction of ax7v1 2009 and ax7v2 2010 is
sufficient.
In ax7v 2008, it is still allowed to substitute the same variable for 𝑥 and 𝑧, or the same variable for 𝑦 and 𝑧. Therefore, ax7v 2008 "bundles" (a term coined by Raph Levien) its "principal instance" (𝑥 = 𝑦 → (𝑥 = 𝑧 → 𝑦 = 𝑧)) with 𝑥, 𝑦, 𝑧 distinct, and its "degenerate instances" (𝑥 = 𝑦 → (𝑥 = 𝑥 → 𝑦 = 𝑥)) and (𝑥 = 𝑦 → (𝑥 = 𝑦 → 𝑦 = 𝑦)) with 𝑥, 𝑦 distinct. These degenerate instances are for instance used in the proofs of equcomiv 2013 and equid 2011 respectively. (Contributed by BJ, 7-Dec-2020.) Use ax7 2015 instead. (New usage is discouraged.) |
⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 → 𝑦 = 𝑧)) | ||
Theorem | ax7v1 2009* | First of two weakened versions of ax7v 2008, with an extra disjoint variable condition on 𝑥, 𝑧, see comments there. (Contributed by BJ, 7-Dec-2020.) |
⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 → 𝑦 = 𝑧)) | ||
Theorem | ax7v2 2010* | Second of two weakened versions of ax7v 2008, with an extra disjoint variable condition on 𝑦, 𝑧, see comments there. (Contributed by BJ, 7-Dec-2020.) |
⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 → 𝑦 = 𝑧)) | ||
Theorem | equid 2011 | Identity law for equality. Lemma 2 of [KalishMontague] p. 85. See also Lemma 6 of [Tarski] p. 68. (Contributed by NM, 1-Apr-2005.) (Revised by NM, 9-Apr-2017.) (Proof shortened by Wolf Lammen, 22-Aug-2020.) |
⊢ 𝑥 = 𝑥 | ||
Theorem | nfequid 2012 | Bound-variable hypothesis builder for 𝑥 = 𝑥. This theorem tells us that any variable, including 𝑥, is effectively not free in 𝑥 = 𝑥, even though 𝑥 is technically free according to the traditional definition of free variable. (Contributed by NM, 13-Jan-2011.) (Revised by NM, 21-Aug-2017.) |
⊢ Ⅎ𝑦 𝑥 = 𝑥 | ||
Theorem | equcomiv 2013* | Weaker form of equcomi 2016 with a disjoint variable condition on 𝑥, 𝑦. This is an intermediate step and equcomi 2016 is fully recovered later. (Contributed by BJ, 7-Dec-2020.) |
⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) | ||
Theorem | ax6evr 2014* | A commuted form of ax6ev 1969. (Contributed by BJ, 7-Dec-2020.) |
⊢ ∃𝑥 𝑦 = 𝑥 | ||
Theorem | ax7 2015 |
Proof of ax-7 2007 from ax7v1 2009 and ax7v2 2010 (and earlier axioms), proving
sufficiency of the conjunction of the latter two weakened versions of
ax7v 2008, which is itself a weakened version of ax-7 2007.
Note that the weakened version of ax-7 2007 obtained by adding a disjoint variable condition on 𝑥, 𝑧 (resp. on 𝑦, 𝑧) does not permit, together with the other axioms, to prove reflexivity (resp. symmetry). (Contributed by BJ, 7-Dec-2020.) |
⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 → 𝑦 = 𝑧)) | ||
Theorem | equcomi 2016 | Commutative law for equality. Equality is a symmetric relation. Lemma 3 of [KalishMontague] p. 85. See also Lemma 7 of [Tarski] p. 69. (Contributed by NM, 10-Jan-1993.) (Revised by NM, 9-Apr-2017.) |
⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) | ||
Theorem | equcom 2017 | Commutative law for equality. Equality is a symmetric relation. (Contributed by NM, 20-Aug-1993.) |
⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) | ||
Theorem | equcomd 2018 | Deduction form of equcom 2017, symmetry of equality. For the versions for classes, see eqcom 2747 and eqcomd 2746. (Contributed by BJ, 6-Oct-2019.) |
⊢ (𝜑 → 𝑥 = 𝑦) ⇒ ⊢ (𝜑 → 𝑦 = 𝑥) | ||
Theorem | equcoms 2019 | An inference commuting equality in antecedent. Used to eliminate the need for a syllogism. (Contributed by NM, 10-Jan-1993.) |
⊢ (𝑥 = 𝑦 → 𝜑) ⇒ ⊢ (𝑦 = 𝑥 → 𝜑) | ||
Theorem | equtr 2020 | A transitive law for equality. (Contributed by NM, 23-Aug-1993.) |
⊢ (𝑥 = 𝑦 → (𝑦 = 𝑧 → 𝑥 = 𝑧)) | ||
Theorem | equtrr 2021 | A transitive law for equality. Lemma L17 in [Megill] p. 446 (p. 14 of the preprint). (Contributed by NM, 23-Aug-1993.) |
⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 → 𝑧 = 𝑦)) | ||
Theorem | equeuclr 2022 | Commuted version of equeucl 2023 (equality is left-Euclidean). (Contributed by BJ, 12-Apr-2021.) |
⊢ (𝑥 = 𝑧 → (𝑦 = 𝑧 → 𝑦 = 𝑥)) | ||
Theorem | equeucl 2023 | Equality is a left-Euclidean binary relation. (Right-Euclideanness is stated in ax-7 2007.) Curried (exported) form of equtr2 2026. (Contributed by BJ, 11-Apr-2021.) |
⊢ (𝑥 = 𝑧 → (𝑦 = 𝑧 → 𝑥 = 𝑦)) | ||
Theorem | equequ1 2024 | An equivalence law for equality. (Contributed by NM, 1-Aug-1993.) (Proof shortened by Wolf Lammen, 10-Dec-2017.) |
⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑦 = 𝑧)) | ||
Theorem | equequ2 2025 | An equivalence law for equality. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Wolf Lammen, 4-Aug-2017.) (Proof shortened by BJ, 12-Apr-2021.) |
⊢ (𝑥 = 𝑦 → (𝑧 = 𝑥 ↔ 𝑧 = 𝑦)) | ||
Theorem | equtr2 2026 | Equality is a left-Euclidean binary relation. Uncurried (imported) form of equeucl 2023. (Contributed by NM, 12-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by BJ, 11-Apr-2021.) |
⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑧) → 𝑥 = 𝑦) | ||
Theorem | stdpc6 2027 | One of the two equality axioms of standard predicate calculus, called reflexivity of equality. (The other one is stdpc7 2251.) Axiom 6 of [Mendelson] p. 95. Mendelson doesn't say why he prepended the redundant quantifier, but it was probably to be compatible with free logic (which is valid in the empty domain). (Contributed by NM, 16-Feb-2005.) |
⊢ ∀𝑥 𝑥 = 𝑥 | ||
Theorem | equvinv 2028* | A variable introduction law for equality. Lemma 15 of [Monk2] p. 109. (Contributed by NM, 9-Jan-1993.) Remove dependencies on ax-10 2141, ax-13 2380. (Revised by Wolf Lammen, 10-Jun-2019.) Move the quantified variable (𝑧) to the left of the equality signs. (Revised by Wolf Lammen, 11-Apr-2021.) (Proof shortened by Wolf Lammen, 12-Jul-2022.) |
⊢ (𝑥 = 𝑦 ↔ ∃𝑧(𝑧 = 𝑥 ∧ 𝑧 = 𝑦)) | ||
Theorem | equvinva 2029* | A modified version of the forward implication of equvinv 2028 adapted to common usage. (Contributed by Wolf Lammen, 8-Sep-2018.) |
⊢ (𝑥 = 𝑦 → ∃𝑧(𝑥 = 𝑧 ∧ 𝑦 = 𝑧)) | ||
Theorem | equvelv 2030* | A biconditional form of equvel 2464 with disjoint variable conditions and proved from Tarski's FOL axiom schemes. (Contributed by Andrew Salmon, 2-Jun-2011.) Reduce axiom usage. (Revised by Wolf Lammen, 10-Apr-2021.) (Proof shortened by Wolf Lammen, 12-Jul-2022.) |
⊢ (∀𝑧(𝑧 = 𝑥 → 𝑧 = 𝑦) ↔ 𝑥 = 𝑦) | ||
Theorem | ax13b 2031 | An equivalence between two ways of expressing ax-13 2380. See the comment for ax-13 2380. (Contributed by NM, 2-May-2017.) (Proof shortened by Wolf Lammen, 26-Feb-2018.) (Revised by BJ, 15-Sep-2020.) |
⊢ ((¬ 𝑥 = 𝑦 → (𝑦 = 𝑧 → 𝜑)) ↔ (¬ 𝑥 = 𝑦 → (¬ 𝑥 = 𝑧 → (𝑦 = 𝑧 → 𝜑)))) | ||
Theorem | spfw 2032* | Weak version of sp 2184. Uses only Tarski's FOL axiom schemes. Lemma 9 of [KalishMontague] p. 87. This may be the best we can do with minimal distinct variable conditions. (Contributed by NM, 19-Apr-2017.) (Proof shortened by Wolf Lammen, 10-Oct-2021.) |
⊢ (¬ 𝜓 → ∀𝑥 ¬ 𝜓) & ⊢ (∀𝑥𝜑 → ∀𝑦∀𝑥𝜑) & ⊢ (¬ 𝜑 → ∀𝑦 ¬ 𝜑) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥𝜑 → 𝜑) | ||
Theorem | spw 2033* | Weak version of the specialization scheme sp 2184. Lemma 9 of [KalishMontague] p. 87. While it appears that sp 2184 in its general form does not follow from Tarski's FOL axiom schemes, from this theorem we can prove any instance of sp 2184 having mutually distinct setvar variables and no wff metavariables (see ax12wdemo 2135 for an example of the procedure to eliminate the hypothesis). Other approximations of sp 2184 are spfw 2032 (minimal distinct variable requirements), spnfw 1979 (when 𝑥 is not free in ¬ 𝜑), spvw 1980 (when 𝑥 does not appear in 𝜑), sptruw 1804 (when 𝜑 is true), spfalw 1997 (when 𝜑 is false), and spvv 1996 (where 𝜑 is changed into 𝜓). (Contributed by NM, 9-Apr-2017.) (Proof shortened by Wolf Lammen, 27-Feb-2018.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥𝜑 → 𝜑) | ||
Theorem | cbvalw 2034* | Change bound variable. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 9-Apr-2017.) |
⊢ (∀𝑥𝜑 → ∀𝑦∀𝑥𝜑) & ⊢ (¬ 𝜓 → ∀𝑥 ¬ 𝜓) & ⊢ (∀𝑦𝜓 → ∀𝑥∀𝑦𝜓) & ⊢ (¬ 𝜑 → ∀𝑦 ¬ 𝜑) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) | ||
Theorem | cbvalvw 2035* | Change bound variable. Uses only Tarski's FOL axiom schemes. See cbvalv 2408 for a version with fewer disjoint variable conditions but requiring more axioms. (Contributed by NM, 9-Apr-2017.) (Proof shortened by Wolf Lammen, 28-Feb-2018.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) | ||
Theorem | cbvexvw 2036* | Change bound variable. Uses only Tarski's FOL axiom schemes. See cbvexv 2409 for a version with fewer disjoint variable conditions but requiring more axioms. (Contributed by NM, 19-Apr-2017.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) | ||
Theorem | cbvaldvaw 2037* | Rule used to change the bound variable in a universal quantifier with implicit substitution. Deduction form. Version of cbvaldva 2417 with a disjoint variable condition, requiring fewer axioms. (Contributed by David Moews, 1-May-2017.) Avoid ax-13 2380. (Revised by GG, 10-Jan-2024.) Reduce axiom usage, along an idea of GG. (Revised by Wolf Lammen, 10-Feb-2024.) |
⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) | ||
Theorem | cbvexdvaw 2038* | Rule used to change the bound variable in an existential quantifier with implicit substitution. Deduction form. Version of cbvexdva 2418 with a disjoint variable condition, requiring fewer axioms. (Contributed by David Moews, 1-May-2017.) Avoid ax-13 2380. (Revised by GG, 10-Jan-2024.) Reduce axiom usage. (Revised by Wolf Lammen, 10-Feb-2024.) |
⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑦𝜒)) | ||
Theorem | cbval2vw 2039* | Rule used to change bound variables, using implicit substitution. Version of cbval2vv 2421 with more disjoint variable conditions, which requires fewer axioms . (Contributed by NM, 4-Feb-2005.) Avoid ax-13 2380. (Revised by GG, 10-Jan-2024.) |
⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑧∀𝑤𝜓) | ||
Theorem | cbvex2vw 2040* | Rule used to change bound variables, using implicit substitution. Version of cbvex2vv 2422 with more disjoint variable conditions, which requires fewer axioms . (Contributed by NM, 26-Jul-1995.) Avoid ax-13 2380. (Revised by GG, 10-Jan-2024.) |
⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑧∃𝑤𝜓) | ||
Theorem | cbvex4vw 2041* | Rule used to change bound variables, using implicit substitution. Version of cbvex4v 2423 with more disjoint variable conditions, which requires fewer axioms. (Contributed by NM, 26-Jul-1995.) Avoid ax-13 2380. (Revised by GG, 10-Jan-2024.) |
⊢ ((𝑥 = 𝑣 ∧ 𝑦 = 𝑢) → (𝜑 ↔ 𝜓)) & ⊢ ((𝑧 = 𝑓 ∧ 𝑤 = 𝑔) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (∃𝑥∃𝑦∃𝑧∃𝑤𝜑 ↔ ∃𝑣∃𝑢∃𝑓∃𝑔𝜒) | ||
Theorem | alcomimw 2042* | Weak version of ax-11 2158. See alcomw 2044 for the biconditional form. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 10-Apr-2017.) (Proof shortened by Wolf Lammen, 28-Dec-2023.) |
⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) | ||
Theorem | excomimw 2043* | Weak version of excomim 2164. Uses only Tarski's FOL axiom schemes. (Contributed by BTernaryTau, 23-Jun-2025.) |
⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥∃𝑦𝜑 → ∃𝑦∃𝑥𝜑) | ||
Theorem | alcomw 2044* | Weak version of alcom 2160 and biconditional form of alcomimw 2042. Uses only Tarski's FOL axiom schemes. (Contributed by BTernaryTau, 28-Dec-2024.) |
⊢ (𝑥 = 𝑤 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜒)) ⇒ ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑦∀𝑥𝜑) | ||
Theorem | hbn1fw 2045* | Weak version of ax-10 2141 from which we can prove any ax-10 2141 instance not involving wff variables or bundling. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 19-Apr-2017.) (Proof shortened by Wolf Lammen, 28-Feb-2018.) |
⊢ (∀𝑥𝜑 → ∀𝑦∀𝑥𝜑) & ⊢ (¬ 𝜓 → ∀𝑥 ¬ 𝜓) & ⊢ (∀𝑦𝜓 → ∀𝑥∀𝑦𝜓) & ⊢ (¬ 𝜑 → ∀𝑦 ¬ 𝜑) & ⊢ (¬ ∀𝑦𝜓 → ∀𝑥 ¬ ∀𝑦𝜓) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑) | ||
Theorem | hbn1w 2046* | Weak version of hbn1 2142. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 9-Apr-2017.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑) | ||
Theorem | hba1w 2047* | Weak version of hba1 2297. See comments for ax10w 2129. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 9-Apr-2017.) (Proof shortened by Wolf Lammen, 10-Oct-2021.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) | ||
Theorem | hbe1w 2048* | Weak version of hbe1 2143. See comments for ax10w 2129. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 19-Apr-2017.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥𝜑 → ∀𝑥∃𝑥𝜑) | ||
Theorem | hbalw 2049* | Weak version of hbal 2168. Uses only Tarski's FOL axiom schemes. Unlike hbal 2168, this theorem requires that 𝑥 and 𝑦 be distinct, i.e., not be bundled. (Contributed by NM, 19-Apr-2017.) |
⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜓)) & ⊢ (𝜑 → ∀𝑥𝜑) ⇒ ⊢ (∀𝑦𝜑 → ∀𝑥∀𝑦𝜑) | ||
Theorem | 19.8aw 2050* | If a formula is true, then it is true for at least one instance. This is to 19.8a 2182 what spw 2033 is to sp 2184. (Contributed by SN, 26-Sep-2024.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝜑 → ∃𝑥𝜑) | ||
Theorem | exexw 2051* | Existential quantification over a given variable is idempotent. Weak version of bj-exexbiex 36658, requiring fewer axioms. (Contributed by GG, 4-Nov-2024.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥𝜑 ↔ ∃𝑥∃𝑥𝜑) | ||
Theorem | spaev 2052* |
A special instance of sp 2184 applied to an equality with a disjoint
variable condition. Unlike the more general sp 2184, we
can prove this
without ax-12 2178. Instance of aeveq 2056.
The antecedent ∀𝑥𝑥 = 𝑦 with distinct 𝑥 and 𝑦 is a characteristic of a degenerate universe, in which just one object exists. Actually more than one object may still exist, but if so, we give up on equality as a discriminating term. Separating this degenerate case from a richer universe, where inequality is possible, is a common proof idea. The name of this theorem follows a convention, where the condition ∀𝑥𝑥 = 𝑦 is denoted by 'aev', a shorthand for 'all equal, with a distinct variable condition'. (Contributed by Wolf Lammen, 14-Mar-2021.) |
⊢ (∀𝑥 𝑥 = 𝑦 → 𝑥 = 𝑦) | ||
Theorem | cbvaev 2053* | Change bound variable in an equality with a disjoint variable condition. Instance of aev 2057. (Contributed by NM, 22-Jul-2015.) (Revised by BJ, 18-Jun-2019.) |
⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑧 = 𝑦) | ||
Theorem | aevlem0 2054* | Lemma for aevlem 2055. Instance of aev 2057. (Contributed by NM, 8-Jul-2016.) (Proof shortened by Wolf Lammen, 17-Feb-2018.) Remove dependency on ax-12 2178. (Revised by Wolf Lammen, 14-Mar-2021.) Extract from proof of a former lemma for axc11n 2434 and add DV condition to reduce axiom usage. (Revised by BJ, 29-Mar-2021.) (Proof shortened by Wolf Lammen, 30-Mar-2021.) |
⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑧 = 𝑥) | ||
Theorem | aevlem 2055* | Lemma for aev 2057 and axc16g 2261. Change free and bound variables. Instance of aev 2057. (Contributed by NM, 22-Jul-2015.) (Proof shortened by Wolf Lammen, 17-Feb-2018.) Remove dependency on ax-13 2380, along an idea of BJ. (Revised by Wolf Lammen, 30-Nov-2019.) Reduce axiom usage. (Revised by BJ, 29-Mar-2021.) |
⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑧 = 𝑡) | ||
Theorem | aeveq 2056* | The antecedent ∀𝑥𝑥 = 𝑦 with a disjoint variable condition (typical of a one-object universe) forces equality of everything. (Contributed by Wolf Lammen, 19-Mar-2021.) |
⊢ (∀𝑥 𝑥 = 𝑦 → 𝑧 = 𝑡) | ||
Theorem | aev 2057* | A "distinctor elimination" lemma with no disjoint variable conditions on variables in the consequent. (Contributed by NM, 8-Nov-2006.) Remove dependency on ax-11 2158. (Revised by Wolf Lammen, 7-Sep-2018.) Remove dependency on ax-13 2380, inspired by an idea of BJ. (Revised by Wolf Lammen, 30-Nov-2019.) Remove dependency on ax-12 2178. (Revised by Wolf Lammen, 19-Mar-2021.) |
⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑡 = 𝑢) | ||
Theorem | aev2 2058* |
A version of aev 2057 with two universal quantifiers in the
consequent.
One can prove similar statements with arbitrary numbers of universal
quantifiers in the consequent (the series begins with aeveq 2056, aev 2057,
aev2 2058).
Using aev 2057 and alrimiv 1926, one can actually prove (with no more axioms) any scheme of the form (∀𝑥𝑥 = 𝑦 → PHI) , DV (𝑥, 𝑦) where PHI involves only setvar variables and the connectors →, ↔, ∧, ∨, ⊤, =, ∀, ∃, ∃*, ∃!, Ⅎ. An example is given by aevdemo 30484. This list cannot be extended to ¬ or ⊥ since the scheme ∀𝑥𝑥 = 𝑦 is consistent with ax-mp 5, ax-gen 1793, ax-1 6-- ax-13 2380 (as the one-element universe shows), so for instance (∀𝑥𝑥 = 𝑦 → ⊥), DV (𝑥, 𝑦) is not provable from these axioms alone (indeed, dtru 5456 uses non-logical axioms as well). (Contributed by BJ, 23-Mar-2021.) |
⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑧∀𝑡 𝑢 = 𝑣) | ||
Theorem | hbaev 2059* | All variables are effectively bound in an identical variable specifier. Version of hbae 2439 with a disjoint variable condition, requiring fewer axioms. Instance of aev2 2058. (Contributed by NM, 13-May-1993.) (Revised by Wolf Lammen, 22-Mar-2021.) |
⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑧∀𝑥 𝑥 = 𝑦) | ||
Theorem | naev 2060* | If some set variables can assume different values, then any two distinct set variables cannot always be the same. (Contributed by Wolf Lammen, 10-Aug-2019.) |
⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑢 𝑢 = 𝑣) | ||
Theorem | naev2 2061* | Generalization of hbnaev 2062. (Contributed by Wolf Lammen, 9-Apr-2021.) |
⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑧 ¬ ∀𝑡 𝑡 = 𝑢) | ||
Theorem | hbnaev 2062* | Any variable is free in ¬ ∀𝑥𝑥 = 𝑦, if 𝑥 and 𝑦 are distinct. This condition is dropped in hbnae 2440, at the expense of more axiom dependencies. Instance of naev2 2061. (Contributed by NM, 13-May-1993.) (Revised by Wolf Lammen, 9-Apr-2021.) |
⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑧 ¬ ∀𝑥 𝑥 = 𝑦) | ||
Theorem | sbjust 2063* | Justification theorem for df-sb 2065 proved from Tarski's FOL axiom schemes. (Contributed by BJ, 22-Jan-2023.) |
⊢ (∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) ↔ ∀𝑧(𝑧 = 𝑡 → ∀𝑥(𝑥 = 𝑧 → 𝜑))) | ||
Syntax | wsb 2064 | Extend wff definition to include proper substitution. Read: "the wff that results when 𝑦 is properly substituted for 𝑥 in wff 𝜑". (Contributed by NM, 24-Jan-2006.) |
wff [𝑦 / 𝑥]𝜑 | ||
Definition | df-sb 2065* |
Define proper substitution. For our notation, we use [𝑡 / 𝑥]𝜑
to mean "the wff that results from the proper substitution of 𝑡 for
𝑥 in the wff 𝜑". That is, 𝑡
properly replaces 𝑥.
For example, [𝑡 / 𝑥]𝑧 ∈ 𝑥 is the same as 𝑧 ∈ 𝑡 (when 𝑥
and 𝑧 are distinct), as shown in elsb2 2125.
Our notation was introduced in Haskell B. Curry's Foundations of Mathematical Logic (1977), p. 316 and is frequently used in textbooks of lambda calculus and combinatory logic. This notation improves the common but ambiguous notation, "𝜑(𝑡) is the wff that results when 𝑡 is properly substituted for 𝑥 in 𝜑(𝑥)". For example, if the original 𝜑(𝑥) is 𝑥 = 𝑡, then 𝜑(𝑡) is 𝑡 = 𝑡, from which we obtain that 𝜑(𝑥) is 𝑥 = 𝑥. So what exactly does 𝜑(𝑥) mean? Curry's notation solves this problem. A very similar notation, namely (𝑦 ∣ 𝑥)𝜑, was introduced in Bourbaki's Set Theory (Chapter 1, Description of Formal Mathematic, 1953). In most books, proper substitution has a somewhat complicated recursive definition with multiple cases based on the occurrences of free and bound variables in the wff. Instead, we use a single formula that is exactly equivalent and gives us a direct definition. We later prove that our definition has the properties we expect of proper substitution (see Theorems sbequ 2083, sbcom2 2174 and sbid2v 2517). Note that our definition is valid even when 𝑥 and 𝑡 are replaced with the same variable, as sbid 2256 shows. We achieve this by applying twice Tarski's definition sb6 2085 which is valid for disjoint variables, and introducing a dummy variable 𝑦 which isolates 𝑥 from 𝑡, as in dfsb7 2283 with respect to sb5 2277. We can also achieve this by having 𝑥 free in the first conjunct and bound in the second, as the alternate definition dfsb1 2489 shows. Another version that mixes free and bound variables is dfsb3 2502. When 𝑥 and 𝑡 are distinct, we can express proper substitution with the simpler expressions of sb5 2277 and sb6 2085. Note that the occurrences of a given variable in the definiens are either all bound (𝑥, 𝑦) or all free (𝑡). Also note that the definiens uses only primitive symbols. This double level definition will make several proofs using it appear as doubled. Alternately, one could often first prove as a lemma the same theorem with a disjoint variable condition on the substitute and the substituted variables, and then prove the original theorem by applying this lemma twice in a row. (Contributed by NM, 10-May-1993.) Revised from the original definition dfsb1 2489. (Revised by BJ, 22-Dec-2020.) |
⊢ ([𝑡 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | ||
Theorem | sbt 2066 | A substitution into a theorem yields a theorem. See sbtALT 2069 for a shorter proof requiring more axioms. See chvar 2403 and chvarv 2404 for versions using implicit substitution. (Contributed by NM, 21-Jan-2004.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 20-Jul-2018.) Revise df-sb 2065. (Revised by Steven Nguyen, 6-Jul-2023.) |
⊢ 𝜑 ⇒ ⊢ [𝑡 / 𝑥]𝜑 | ||
Theorem | sbtru 2067 | The result of substituting in the truth constant "true" is true. (Contributed by BJ, 2-Sep-2023.) |
⊢ [𝑦 / 𝑥]⊤ | ||
Theorem | stdpc4 2068 | The specialization axiom of standard predicate calculus. It states that if a statement 𝜑 holds for all 𝑥, then it also holds for the specific case of 𝑡 (properly) substituted for 𝑥. Translated to traditional notation, it can be read: "∀𝑥𝜑(𝑥) → 𝜑(𝑡), provided that 𝑡 is free for 𝑥 in 𝜑(𝑥)". Axiom 4 of [Mendelson] p. 69. See also spsbc 3817 and rspsbc 3901. (Contributed by NM, 14-May-1993.) Revise df-sb 2065. (Revised by BJ, 22-Dec-2020.) |
⊢ (∀𝑥𝜑 → [𝑡 / 𝑥]𝜑) | ||
Theorem | sbtALT 2069 | Alternate proof of sbt 2066, shorter but using ax-4 1807 and ax-5 1909. (Contributed by NM, 21-Jan-2004.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 ⇒ ⊢ [𝑦 / 𝑥]𝜑 | ||
Theorem | 2stdpc4 2070 | A double specialization using explicit substitution. This is Theorem PM*11.1 in [WhiteheadRussell] p. 159. See stdpc4 2068 for the analogous single specialization. See 2sp 2187 for another double specialization. (Contributed by Andrew Salmon, 24-May-2011.) (Revised by BJ, 21-Oct-2018.) |
⊢ (∀𝑥∀𝑦𝜑 → [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) | ||
Theorem | sbi1 2071 | Distribute substitution over implication. (Contributed by NM, 14-May-1993.) Remove dependencies on axioms. (Revised by Steven Nguyen, 24-Jul-2023.) |
⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) | ||
Theorem | spsbim 2072 | Distribute substitution over implication. Closed form of sbimi 2074. Specialization of implication. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) Revise df-sb 2065. (Revised by BJ, 22-Dec-2020.) (Proof shortened by Steven Nguyen, 24-Jul-2023.) |
⊢ (∀𝑥(𝜑 → 𝜓) → ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓)) | ||
Theorem | spsbbi 2073 | Biconditional property for substitution. Closed form of sbbii 2076. Specialization of biconditional. (Contributed by NM, 2-Jun-1993.) Revise df-sb 2065. (Revised by BJ, 22-Dec-2020.) |
⊢ (∀𝑥(𝜑 ↔ 𝜓) → ([𝑡 / 𝑥]𝜑 ↔ [𝑡 / 𝑥]𝜓)) | ||
Theorem | sbimi 2074 | Distribute substitution over implication. (Contributed by NM, 25-Jun-1998.) Revise df-sb 2065. (Revised by BJ, 22-Dec-2020.) (Proof shortened by Steven Nguyen, 24-Jul-2023.) |
⊢ (𝜑 → 𝜓) ⇒ ⊢ ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓) | ||
Theorem | sb2imi 2075 | Distribute substitution over implication. Compare al2imi 1813. (Contributed by Steven Nguyen, 13-Aug-2023.) |
⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ ([𝑡 / 𝑥]𝜑 → ([𝑡 / 𝑥]𝜓 → [𝑡 / 𝑥]𝜒)) | ||
Theorem | sbbii 2076 | Infer substitution into both sides of a logical equivalence. (Contributed by NM, 14-May-1993.) |
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ ([𝑡 / 𝑥]𝜑 ↔ [𝑡 / 𝑥]𝜓) | ||
Theorem | 2sbbii 2077 | Infer double substitution into both sides of a logical equivalence. (Contributed by AV, 30-Jul-2023.) |
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ ([𝑡 / 𝑥][𝑢 / 𝑦]𝜑 ↔ [𝑡 / 𝑥][𝑢 / 𝑦]𝜓) | ||
Theorem | sbimdv 2078* | Deduction substituting both sides of an implication, with 𝜑 and 𝑥 disjoint. See also sbimd 2246. (Contributed by Wolf Lammen, 6-May-2023.) Revise df-sb 2065. (Revised by Steven Nguyen, 6-Jul-2023.) |
⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → ([𝑡 / 𝑥]𝜓 → [𝑡 / 𝑥]𝜒)) | ||
Theorem | sbbidv 2079* | Deduction substituting both sides of a biconditional, with 𝜑 and 𝑥 disjoint. See also sbbid 2247. (Contributed by Wolf Lammen, 6-May-2023.) (Proof shortened by Steven Nguyen, 6-Jul-2023.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ([𝑡 / 𝑥]𝜓 ↔ [𝑡 / 𝑥]𝜒)) | ||
Theorem | sban 2080 | Conjunction inside and outside of a substitution are equivalent. Compare 19.26 1869. (Contributed by NM, 14-May-1993.) (Proof shortened by Steven Nguyen, 13-Aug-2023.) |
⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) | ||
Theorem | sb3an 2081 | Threefold conjunction inside and outside of a substitution are equivalent. (Contributed by NM, 14-Dec-2006.) |
⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓 ∧ [𝑦 / 𝑥]𝜒)) | ||
Theorem | spsbe 2082 | Existential generalization: if a proposition is true for a specific instance, then there exists an instance where it is true. (Contributed by NM, 29-Jun-1993.) (Proof shortened by Wolf Lammen, 3-May-2018.) Revise df-sb 2065. (Revised by BJ, 22-Dec-2020.) (Proof shortened by Steven Nguyen, 11-Jul-2023.) |
⊢ ([𝑡 / 𝑥]𝜑 → ∃𝑥𝜑) | ||
Theorem | sbequ 2083 | Equality property for substitution, from Tarski's system. Used in proof of Theorem 9.7 in [Megill] p. 449 (p. 16 of the preprint). (Contributed by NM, 14-May-1993.) Revise df-sb 2065. (Revised by BJ, 30-Dec-2020.) |
⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 ↔ [𝑦 / 𝑧]𝜑)) | ||
Theorem | sbequi 2084 | An equality theorem for substitution. (Contributed by NM, 14-May-1993.) (Proof shortened by Wolf Lammen, 15-Sep-2018.) (Proof shortened by Steven Nguyen, 7-Jul-2023.) |
⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑)) | ||
Theorem | sb6 2085* | Alternate definition of substitution when variables are disjoint. Compare Theorem 6.2 of [Quine] p. 40. Also proved as Lemmas 16 and 17 of [Tarski] p. 70. The implication "to the left" also holds without a disjoint variable condition (sb2 2487). Theorem sb6f 2505 replaces the disjoint variable condition with a nonfreeness hypothesis. Theorem sb4b 2483 replaces it with a distinctor antecedent. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Wolf Lammen, 21-Sep-2018.) Revise df-sb 2065. (Revised by BJ, 22-Dec-2020.) Remove use of ax-11 2158. (Revised by Steven Nguyen, 7-Jul-2023.) (Proof shortened by Wolf Lammen, 16-Jul-2023.) |
⊢ ([𝑡 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑡 → 𝜑)) | ||
Theorem | 2sb6 2086* | Equivalence for double substitution. (Contributed by NM, 3-Feb-2005.) |
⊢ ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ ∀𝑥∀𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜑)) | ||
Theorem | sb1v 2087* | One direction of sb5 2277, provable from fewer axioms. Version of sb1 2486 with a disjoint variable condition using fewer axioms. (Contributed by NM, 13-May-1993.) (Revised by Wolf Lammen, 20-Jan-2024.) |
⊢ ([𝑦 / 𝑥]𝜑 → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | ||
Theorem | sbv 2088* | Substitution for a variable not occurring in a proposition. See sbf 2272 for a version without disjoint variable condition on 𝑥, 𝜑. If one adds a disjoint variable condition on 𝑥, 𝑡, then sbv 2088 can be proved directly by chaining equsv 2002 with sb6 2085. (Contributed by BJ, 22-Dec-2020.) |
⊢ ([𝑡 / 𝑥]𝜑 ↔ 𝜑) | ||
Theorem | sbcom4 2089* | Commutativity law for substitution. This theorem was incorrectly used as our previous version of pm11.07 2090 but may still be useful. (Contributed by Andrew Salmon, 17-Jun-2011.) (Proof shortened by Jim Kingdon, 22-Jan-2018.) |
⊢ ([𝑤 / 𝑥][𝑦 / 𝑧]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑) | ||
Theorem | pm11.07 2090 | Axiom *11.07 in [WhiteheadRussell] p. 159. The original reads: *11.07 "Whatever possible argument 𝑥 may be, 𝜑(𝑥, 𝑦) is true whatever possible argument 𝑦 may be" implies the corresponding statement with 𝑥 and 𝑦 interchanged except in "𝜑(𝑥, 𝑦)". Under our formalism this appears to correspond to idi 1 and not to sbcom4 2089 as earlier thought. See https://groups.google.com/g/metamath/c/iS0fOvSemC8/m/M1zTH8wxCAAJ 2089. (Contributed by BJ, 16-Sep-2018.) (New usage is discouraged.) |
⊢ 𝜑 ⇒ ⊢ 𝜑 | ||
Theorem | sbrimvw 2091* | Substitution in an implication with a variable not free in the antecedent affects only the consequent. Version of sbrim 2308 based on fewer axioms, but with more disjoint variable conditions. Based on an idea of GG. (Contributed by Wolf Lammen, 29-Jan-2024.) |
⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓)) | ||
Theorem | sbbiiev 2092* | An equivalence of substitutions (as in sbbii 2076) allowing the additional information that 𝑥 = 𝑡. Version of sbiev 2318 and sbievw 2093 without a disjoint variable condition on 𝜓, useful for substituting only part of 𝜑. (Contributed by SN, 24-Aug-2025.) |
⊢ (𝑥 = 𝑡 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ([𝑡 / 𝑥]𝜑 ↔ [𝑡 / 𝑥]𝜓) | ||
Theorem | sbievw 2093* | Conversion of implicit substitution to explicit substitution. Version of sbie 2510 and sbiev 2318 with more disjoint variable conditions, requiring fewer axioms. (Contributed by NM, 30-Jun-1994.) (Revised by BJ, 18-Jul-2023.) (Proof shortened by SN, 24-Aug-2025.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) | ||
Theorem | sbievwOLD 2094* | Obsolete version of sbievw 2093 as of 24-Aug-2025. (Contributed by NM, 30-Jun-1994.) (Revised by BJ, 18-Jul-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) | ||
Theorem | sbiedvw 2095* | Conversion of implicit substitution to explicit substitution (deduction version of sbievw 2093). Version of sbied 2511 and sbiedv 2512 with more disjoint variable conditions, requiring fewer axioms. (Contributed by NM, 30-Jun-1994.) (Revised by GG, 29-Jan-2024.) |
⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ([𝑦 / 𝑥]𝜓 ↔ 𝜒)) | ||
Theorem | 2sbievw 2096* | Conversion of double implicit substitution to explicit substitution. Version of 2sbiev 2513 with more disjoint variable conditions, requiring fewer axioms. (Contributed by AV, 29-Jul-2023.) Avoid ax-13 2380. (Revised by GG, 10-Jan-2024.) |
⊢ ((𝑥 = 𝑡 ∧ 𝑦 = 𝑢) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ([𝑡 / 𝑥][𝑢 / 𝑦]𝜑 ↔ 𝜓) | ||
Theorem | sbcom3vv 2097* | Substituting 𝑦 for 𝑥 and then 𝑧 for 𝑦 is equivalent to substituting 𝑧 for both 𝑥 and 𝑦. Version of sbcom3 2514 with a disjoint variable condition using fewer axioms. (Contributed by NM, 27-May-1997.) (Revised by Giovanni Mascellani, 8-Apr-2018.) (Revised by BJ, 30-Dec-2020.) (Proof shortened by Wolf Lammen, 19-Jan-2023.) |
⊢ ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑦][𝑧 / 𝑥]𝜑) | ||
Theorem | sbievw2 2098* | sbievw 2093 applied twice, avoiding a DV condition on 𝑥, 𝑦. Based on proofs by Wolf Lammen. (Contributed by Steven Nguyen, 29-Jul-2023.) |
⊢ (𝑥 = 𝑤 → (𝜑 ↔ 𝜒)) & ⊢ (𝑤 = 𝑦 → (𝜒 ↔ 𝜓)) ⇒ ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) | ||
Theorem | sbco2vv 2099* | A composition law for substitution. Version of sbco2 2519 with disjoint variable conditions and fewer axioms. (Contributed by NM, 30-Jun-1994.) (Revised by BJ, 22-Dec-2020.) (Proof shortened by Wolf Lammen, 29-Apr-2023.) |
⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) | ||
Theorem | cbvsbv 2100* | Change the bound variable (i.e. the substituted one) in wff's linked by implicit substitution. The proof was extracted from a former cbvabv 2815 version. (Contributed by Wolf Lammen, 16-Mar-2025.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜓) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |