| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-sb | Structured version Visualization version GIF version | ||
| Description: Define proper
substitution. For our notation, we use [𝑡 / 𝑥]𝜑
to mean "the wff that results from the proper substitution of 𝑡 for
𝑥 in the wff 𝜑". That is, 𝑡
properly replaces 𝑥.
For example, [𝑡 / 𝑥]𝑧 ∈ 𝑥 is the same as 𝑧 ∈ 𝑡 (when 𝑥
and 𝑧 are distinct), as shown in elsb2 2126.
Our notation was introduced in Haskell B. Curry's Foundations of Mathematical Logic (1977), p. 316 and is frequently used in textbooks of lambda calculus and combinatory logic. This notation improves the common but ambiguous notation, "𝜑(𝑡) is the wff that results when 𝑡 is properly substituted for 𝑥 in 𝜑(𝑥)". For example, if the original 𝜑(𝑥) is 𝑥 = 𝑡, then 𝜑(𝑡) is 𝑡 = 𝑡, from which we obtain that 𝜑(𝑥) is 𝑥 = 𝑥. So what exactly does 𝜑(𝑥) mean? Curry's notation solves this problem. A very similar notation, namely (𝑦 ∣ 𝑥)𝜑, was introduced in Bourbaki's Set Theory (Chapter 1, Description of Formal Mathematic, 1953). In most books, proper substitution has a somewhat complicated recursive definition with multiple cases based on the occurrences of free and bound variables in the wff. Instead, we use a single formula that is exactly equivalent and gives us a direct definition. We later prove that our definition has the properties we expect of proper substitution (see Theorems sbequ 2084, sbcom2 2174 and sbid2v 2508). Note that our definition is valid even when 𝑥 and 𝑡 are replaced with the same variable, as sbid 2256 shows. We achieve this by applying twice Tarski's definition sb6 2086 which is valid for disjoint variables, and introducing a dummy variable 𝑦 which isolates 𝑥 from 𝑡, as in dfsb7 2279 with respect to sb5 2276. We can also achieve this by having 𝑥 free in the first conjunct and bound in the second, as the alternate definition dfsb1 2480 shows. Another version that mixes free and bound variables is dfsb3 2493. When 𝑥 and 𝑡 are distinct, we can express proper substitution with the simpler expressions of sb5 2276 and sb6 2086. Note that the occurrences of a given variable in the definiens are either all bound (𝑥, 𝑦) or all free (𝑡). Also note that the definiens uses only primitive symbols. This double level definition will make several proofs using it appear as doubled. Alternately, one could often first prove as a lemma the same theorem with a disjoint variable condition on the substitute and the substituted variables, and then prove the original theorem by applying this lemma twice in a row. (Contributed by NM, 10-May-1993.) Revised from the original definition dfsb1 2480. (Revised by BJ, 22-Dec-2020.) |
| Ref | Expression |
|---|---|
| df-sb | ⊢ ([𝑡 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | vt | . . 3 setvar 𝑡 | |
| 4 | 1, 2, 3 | wsb 2065 | . 2 wff [𝑡 / 𝑥]𝜑 |
| 5 | vy | . . . . 5 setvar 𝑦 | |
| 6 | 5, 3 | weq 1962 | . . . 4 wff 𝑦 = 𝑡 |
| 7 | 2, 5 | weq 1962 | . . . . . 6 wff 𝑥 = 𝑦 |
| 8 | 7, 1 | wi 4 | . . . . 5 wff (𝑥 = 𝑦 → 𝜑) |
| 9 | 8, 2 | wal 1538 | . . . 4 wff ∀𝑥(𝑥 = 𝑦 → 𝜑) |
| 10 | 6, 9 | wi 4 | . . 3 wff (𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) |
| 11 | 10, 5 | wal 1538 | . 2 wff ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) |
| 12 | 4, 11 | wb 206 | 1 wff ([𝑡 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: sbt 2067 stdpc4 2069 sbi1 2072 spsbe 2083 sbequ 2084 sb6 2086 sbal 2170 hbsbwOLD 2173 sbequ1 2249 sbequ2 2250 dfsb7 2279 sbn 2280 sbrim 2304 cbvsbvf 2362 sb4b 2474 sbequbidv 36199 cbvsbdavw 36239 cbvsbdavw2 36240 bj-ssbeq 36638 bj-ssbid2ALT 36648 bj-ssbid1ALT 36650 |
| Copyright terms: Public domain | W3C validator |