MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-sb Structured version   Visualization version   GIF version

Definition df-sb 2066
Description: Define proper substitution. For our notation, we use [𝑡 / 𝑥]𝜑 to mean "the wff that results from the proper substitution of 𝑡 for 𝑥 in the wff 𝜑". That is, 𝑡 properly replaces 𝑥. For example, [𝑡 / 𝑥]𝑧𝑥 is the same as 𝑧𝑡 (when 𝑥 and 𝑧 are distinct), as shown in elsb2 2126.

Our notation was introduced in Haskell B. Curry's Foundations of Mathematical Logic (1977), p. 316 and is frequently used in textbooks of lambda calculus and combinatory logic. This notation improves the common but ambiguous notation, "𝜑(𝑡) is the wff that results when 𝑡 is properly substituted for 𝑥 in 𝜑(𝑥)". For example, if the original 𝜑(𝑥) is 𝑥 = 𝑡, then 𝜑(𝑡) is 𝑡 = 𝑡, from which we obtain that 𝜑(𝑥) is 𝑥 = 𝑥. So what exactly does 𝜑(𝑥) mean? Curry's notation solves this problem.

A very similar notation, namely (𝑦𝑥)𝜑, was introduced in Bourbaki's Set Theory (Chapter 1, Description of Formal Mathematic, 1953).

In most books, proper substitution has a somewhat complicated recursive definition with multiple cases based on the occurrences of free and bound variables in the wff. Instead, we use a single formula that is exactly equivalent and gives us a direct definition. We later prove that our definition has the properties we expect of proper substitution (see Theorems sbequ 2084, sbcom2 2174 and sbid2v 2508).

Note that our definition is valid even when 𝑥 and 𝑡 are replaced with the same variable, as sbid 2256 shows. We achieve this by applying twice Tarski's definition sb6 2086 which is valid for disjoint variables, and introducing a dummy variable 𝑦 which isolates 𝑥 from 𝑡, as in dfsb7 2279 with respect to sb5 2276. We can also achieve this by having 𝑥 free in the first conjunct and bound in the second, as the alternate definition dfsb1 2480 shows. Another version that mixes free and bound variables is dfsb3 2493. When 𝑥 and 𝑡 are distinct, we can express proper substitution with the simpler expressions of sb5 2276 and sb6 2086.

Note that the occurrences of a given variable in the definiens are either all bound (𝑥, 𝑦) or all free (𝑡). Also note that the definiens uses only primitive symbols.

This double level definition will make several proofs using it appear as doubled. Alternately, one could often first prove as a lemma the same theorem with a disjoint variable condition on the substitute and the substituted variables, and then prove the original theorem by applying this lemma twice in a row. (Contributed by NM, 10-May-1993.) Revised from the original definition dfsb1 2480. (Revised by BJ, 22-Dec-2020.)

Assertion
Ref Expression
df-sb ([𝑡 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)))
Distinct variable groups:   𝑥,𝑦   𝑦,𝑡   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑡)

Detailed syntax breakdown of Definition df-sb
StepHypRef Expression
1 wph . . 3 wff 𝜑
2 vx . . 3 setvar 𝑥
3 vt . . 3 setvar 𝑡
41, 2, 3wsb 2065 . 2 wff [𝑡 / 𝑥]𝜑
5 vy . . . . 5 setvar 𝑦
65, 3weq 1962 . . . 4 wff 𝑦 = 𝑡
72, 5weq 1962 . . . . . 6 wff 𝑥 = 𝑦
87, 1wi 4 . . . . 5 wff (𝑥 = 𝑦𝜑)
98, 2wal 1538 . . . 4 wff 𝑥(𝑥 = 𝑦𝜑)
106, 9wi 4 . . 3 wff (𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑))
1110, 5wal 1538 . 2 wff 𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑))
124, 11wb 206 1 wff ([𝑡 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)))
Colors of variables: wff setvar class
This definition is referenced by:  sbt  2067  stdpc4  2069  sbi1  2072  spsbe  2083  sbequ  2084  sb6  2086  sbal  2170  hbsbwOLD  2173  sbequ1  2249  sbequ2  2250  dfsb7  2279  sbn  2280  sbrim  2304  cbvsbvf  2362  sb4b  2474  sbequbidv  36199  cbvsbdavw  36239  cbvsbdavw2  36240  bj-ssbeq  36638  bj-ssbid2ALT  36648  bj-ssbid1ALT  36650
  Copyright terms: Public domain W3C validator