![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-sb | Structured version Visualization version GIF version |
Description: Define proper
substitution. For our notation, we use [𝑡 / 𝑥]𝜑
to mean "the wff that results from the proper substitution of 𝑡 for
𝑥 in the wff 𝜑". That is, 𝑡
properly replaces 𝑥.
For example, [𝑡 / 𝑥]𝑧 ∈ 𝑥 is the same as 𝑧 ∈ 𝑡 (when 𝑥
and 𝑧 are distinct), as shown in elsb2 2125.
Our notation was introduced in Haskell B. Curry's Foundations of Mathematical Logic (1977), p. 316 and is frequently used in textbooks of lambda calculus and combinatory logic. This notation improves the common but ambiguous notation, "𝜑(𝑡) is the wff that results when 𝑡 is properly substituted for 𝑥 in 𝜑(𝑥)". For example, if the original 𝜑(𝑥) is 𝑥 = 𝑡, then 𝜑(𝑡) is 𝑡 = 𝑡, from which we obtain that 𝜑(𝑥) is 𝑥 = 𝑥. So what exactly does 𝜑(𝑥) mean? Curry's notation solves this problem. A very similar notation, namely (𝑦 ∣ 𝑥)𝜑, was introduced in Bourbaki's Set Theory (Chapter 1, Description of Formal Mathematic, 1953). In most books, proper substitution has a somewhat complicated recursive definition with multiple cases based on the occurrences of free and bound variables in the wff. Instead, we use a single formula that is exactly equivalent and gives us a direct definition. We later prove that our definition has the properties we expect of proper substitution (see Theorems sbequ 2083, sbcom2 2174 and sbid2v 2517). Note that our definition is valid even when 𝑥 and 𝑡 are replaced with the same variable, as sbid 2256 shows. We achieve this by applying twice Tarski's definition sb6 2085 which is valid for disjoint variables, and introducing a dummy variable 𝑦 which isolates 𝑥 from 𝑡, as in dfsb7 2283 with respect to sb5 2277. We can also achieve this by having 𝑥 free in the first conjunct and bound in the second, as the alternate definition dfsb1 2489 shows. Another version that mixes free and bound variables is dfsb3 2502. When 𝑥 and 𝑡 are distinct, we can express proper substitution with the simpler expressions of sb5 2277 and sb6 2085. Note that the occurrences of a given variable in the definiens are either all bound (𝑥, 𝑦) or all free (𝑡). Also note that the definiens uses only primitive symbols. This double level definition will make several proofs using it appear as doubled. Alternately, one could often first prove as a lemma the same theorem with a disjoint variable condition on the substitute and the substituted variables, and then prove the original theorem by applying this lemma twice in a row. (Contributed by NM, 10-May-1993.) Revised from the original definition dfsb1 2489. (Revised by BJ, 22-Dec-2020.) |
Ref | Expression |
---|---|
df-sb | ⊢ ([𝑡 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | vt | . . 3 setvar 𝑡 | |
4 | 1, 2, 3 | wsb 2064 | . 2 wff [𝑡 / 𝑥]𝜑 |
5 | vy | . . . . 5 setvar 𝑦 | |
6 | 5, 3 | weq 1962 | . . . 4 wff 𝑦 = 𝑡 |
7 | 2, 5 | weq 1962 | . . . . . 6 wff 𝑥 = 𝑦 |
8 | 7, 1 | wi 4 | . . . . 5 wff (𝑥 = 𝑦 → 𝜑) |
9 | 8, 2 | wal 1535 | . . . 4 wff ∀𝑥(𝑥 = 𝑦 → 𝜑) |
10 | 6, 9 | wi 4 | . . 3 wff (𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) |
11 | 10, 5 | wal 1535 | . 2 wff ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) |
12 | 4, 11 | wb 206 | 1 wff ([𝑡 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
Colors of variables: wff setvar class |
This definition is referenced by: sbt 2066 stdpc4 2068 sbi1 2071 spsbe 2082 sbequ 2083 sb6 2085 sbal 2170 hbsbwOLD 2173 sbequ1 2249 sbequ2 2250 dfsb7 2283 sbn 2284 sbrim 2308 nfsbvOLD 2335 cbvsbvf 2369 sb4b 2483 sbequbidv 36180 cbvsbdavw 36220 cbvsbdavw2 36221 bj-ssbeq 36619 bj-ssbid2ALT 36629 bj-ssbid1ALT 36631 |
Copyright terms: Public domain | W3C validator |