Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbt | Structured version Visualization version GIF version |
Description: A substitution into a theorem yields a theorem. See sbtALT 2072 for a shorter proof requiring more axioms. See chvar 2395 and chvarv 2396 for versions using implicit substitution. (Contributed by NM, 21-Jan-2004.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 20-Jul-2018.) Revise df-sb 2068. (Revised by Steven Nguyen, 6-Jul-2023.) |
Ref | Expression |
---|---|
sbt.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
sbt | ⊢ [𝑡 / 𝑥]𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbt.1 | . . . . . 6 ⊢ 𝜑 | |
2 | 1 | a1i 11 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝜑) |
3 | 2 | ax-gen 1798 | . . . 4 ⊢ ∀𝑥(𝑥 = 𝑦 → 𝜑) |
4 | 3 | a1i 11 | . . 3 ⊢ (𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) |
5 | 4 | ax-gen 1798 | . 2 ⊢ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) |
6 | df-sb 2068 | . 2 ⊢ ([𝑡 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
7 | 5, 6 | mpbir 230 | 1 ⊢ [𝑡 / 𝑥]𝜑 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 [wsb 2067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 |
This theorem depends on definitions: df-bi 206 df-sb 2068 |
This theorem is referenced by: sbtru 2070 sbimi 2077 vexw 2721 iscatd2 17390 iuninc 30900 suppss2f 30974 esumpfinvalf 32044 sbtT 42187 2sb5ndVD 42530 2sb5ndALT 42552 icht 44904 |
Copyright terms: Public domain | W3C validator |