MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbt Structured version   Visualization version   GIF version

Theorem sbt 2066
Description: A substitution into a theorem yields a theorem. See sbtALT 2069 for a shorter proof requiring more axioms. See chvar 2399 and chvarv 2400 for versions using implicit substitution. (Contributed by NM, 21-Jan-2004.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 20-Jul-2018.) Revise df-sb 2065. (Revised by Steven Nguyen, 6-Jul-2023.)
Hypothesis
Ref Expression
sbt.1 𝜑
Assertion
Ref Expression
sbt [𝑡 / 𝑥]𝜑

Proof of Theorem sbt
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-sb 2065 . 2 ([𝑡 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)))
2 sbt.1 . . . . 5 𝜑
32a1i 11 . . . 4 (𝑥 = 𝑦𝜑)
43ax-gen 1795 . . 3 𝑥(𝑥 = 𝑦𝜑)
54a1i 11 . 2 (𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑))
61, 5mpgbir 1799 1 [𝑡 / 𝑥]𝜑
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538  [wsb 2064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795
This theorem depends on definitions:  df-bi 207  df-sb 2065
This theorem is referenced by:  sbtru  2067  sbimi  2074  vexw  2719  iscatd2  17693  iuninc  32541  suppss2f  32616  esumpfinvalf  34107  sbtT  44592  2sb5ndVD  44934  2sb5ndALT  44956  icht  47466
  Copyright terms: Public domain W3C validator