| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbt | Structured version Visualization version GIF version | ||
| Description: A substitution into a theorem yields a theorem. See sbtALT 2069 for a shorter proof requiring more axioms. See chvar 2399 and chvarv 2400 for versions using implicit substitution. (Contributed by NM, 21-Jan-2004.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 20-Jul-2018.) Revise df-sb 2065. (Revised by Steven Nguyen, 6-Jul-2023.) |
| Ref | Expression |
|---|---|
| sbt.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| sbt | ⊢ [𝑡 / 𝑥]𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sb 2065 | . 2 ⊢ ([𝑡 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
| 2 | sbt.1 | . . . . 5 ⊢ 𝜑 | |
| 3 | 2 | a1i 11 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝜑) |
| 4 | 3 | ax-gen 1795 | . . 3 ⊢ ∀𝑥(𝑥 = 𝑦 → 𝜑) |
| 5 | 4 | a1i 11 | . 2 ⊢ (𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) |
| 6 | 1, 5 | mpgbir 1799 | 1 ⊢ [𝑡 / 𝑥]𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 [wsb 2064 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 |
| This theorem depends on definitions: df-bi 207 df-sb 2065 |
| This theorem is referenced by: sbtru 2067 sbimi 2074 vexw 2719 iscatd2 17693 iuninc 32541 suppss2f 32616 esumpfinvalf 34107 sbtT 44592 2sb5ndVD 44934 2sb5ndALT 44956 icht 47466 |
| Copyright terms: Public domain | W3C validator |