MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbt Structured version   Visualization version   GIF version

Theorem sbt 2070
Description: A substitution into a theorem yields a theorem. See sbtALT 2073 for a shorter proof requiring more axioms. See chvar 2395 and chvarv 2396 for versions using implicit substitution. (Contributed by NM, 21-Jan-2004.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 20-Jul-2018.) Revise df-sb 2069. (Revised by Steven Nguyen, 6-Jul-2023.)
Hypothesis
Ref Expression
sbt.1 𝜑
Assertion
Ref Expression
sbt [𝑡 / 𝑥]𝜑

Proof of Theorem sbt
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sbt.1 . . . . . 6 𝜑
21a1i 11 . . . . 5 (𝑥 = 𝑦𝜑)
32ax-gen 1799 . . . 4 𝑥(𝑥 = 𝑦𝜑)
43a1i 11 . . 3 (𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑))
54ax-gen 1799 . 2 𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑))
6 df-sb 2069 . 2 ([𝑡 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)))
75, 6mpbir 230 1 [𝑡 / 𝑥]𝜑
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  [wsb 2068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799
This theorem depends on definitions:  df-bi 206  df-sb 2069
This theorem is referenced by:  sbtru  2071  sbimi  2078  vexw  2721  iscatd2  17307  iuninc  30801  suppss2f  30875  esumpfinvalf  31944  sbtT  42076  2sb5ndVD  42419  2sb5ndALT  42441  icht  44792
  Copyright terms: Public domain W3C validator