Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  simprimi Structured version   Visualization version   GIF version

Theorem simprimi 44961
Description: Inference associated with simprim 166. Proved exactly as step 11 is obtained from step 4 in dfbi1ALTa 44960. (Contributed by Eric Schmidt, 22-Oct-2025.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
simprimi.1 ¬ (𝜑 → ¬ 𝜓)
Assertion
Ref Expression
simprimi 𝜓

Proof of Theorem simprimi
StepHypRef Expression
1 tru 1544 . 2
2 ax-1 6 . . . 4 𝜓 → (𝜑 → ¬ 𝜓))
3 simprimi.1 . . . . . . . 8 ¬ (𝜑 → ¬ 𝜓)
43a1i 11 . . . . . . 7 (¬ ¬ ⊤ → ¬ (𝜑 → ¬ 𝜓))
54con4i 114 . . . . . 6 ((𝜑 → ¬ 𝜓) → ¬ ⊤)
65a1i 11 . . . . 5 𝜓 → ((𝜑 → ¬ 𝜓) → ¬ ⊤))
76a2i 14 . . . 4 ((¬ 𝜓 → (𝜑 → ¬ 𝜓)) → (¬ 𝜓 → ¬ ⊤))
82, 7ax-mp 5 . . 3 𝜓 → ¬ ⊤)
98con4i 114 . 2 (⊤ → 𝜓)
101, 9ax-mp 5 1 𝜓
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wtru 1541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-tru 1543
This theorem is referenced by:  dfbi1ALTb  44962
  Copyright terms: Public domain W3C validator