![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > con4i | Structured version Visualization version GIF version |
Description: Inference associated with
con4 113. Its associated inference is mt4 116.
Remark: this can also be proved using notnot 139 followed by nsyl2 145, giving a shorter proof but depending on more axioms (namely, ax-1 6 and ax-2 7). (Contributed by NM, 29-Dec-1992.) |
Ref | Expression |
---|---|
con4i.1 | ⊢ (¬ 𝜑 → ¬ 𝜓) |
Ref | Expression |
---|---|
con4i | ⊢ (𝜓 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con4i.1 | . 2 ⊢ (¬ 𝜑 → ¬ 𝜓) | |
2 | con4 113 | . 2 ⊢ ((¬ 𝜑 → ¬ 𝜓) → (𝜓 → 𝜑)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜓 → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-3 8 |
This theorem is referenced by: mt4 116 pm2.21i 117 modal-b 2257 euae 2686 sbcbr123 4977 brabv 5298 elimasni 5790 ndmfvrcl 6524 oprssdm 7139 ndmovrcl 7144 omelon2 7402 omopthi 8076 fsuppres 8645 sdomsdomcardi 9186 alephgeom 9294 rankcf 9989 adderpq 10168 mulerpq 10169 ssnn0fi 13161 sadcp1 15654 setcepi 17196 oduclatb 17602 cntzrcl 18218 pmtrfrn 18337 dprddomcld 18863 dprdsubg 18886 psrbagsn 19978 dsmmbas2 20573 dsmmfi 20574 istps 21236 isusp 22563 dscmet 22875 dscopn 22876 i1f1lem 23983 sqff1o 25451 upgrfi 26569 wwlksnndef 27394 dmadjrnb 29454 axpowprim 32390 opelco3 32478 sltintdifex 32629 nolesgn2ores 32640 nosepdmlem 32648 nosupbnd1lem3 32671 nosupbnd1lem5 32673 nosupbnd2lem1 32676 bj-modal4e 33497 bj-snmoore 33851 topdifinffinlem 34005 finxp1o 34049 ax6fromc10 35425 axc711to11 35446 axc5c711to11 35450 dffltz 38623 pw2f1ocnv 38975 kelac1 39004 relintabex 39248 axc5c4c711toc5 40095 axc5c4c711to11 40098 disjrnmpt2 40819 eubrv 42621 afvvdm 42692 afvvfunressn 42694 afvvv 42696 afvfv0bi 42703 dfatafv2rnb 42778 afv20defat 42783 fafv2elrnb 42786 afv2fv0 42816 |
Copyright terms: Public domain | W3C validator |