MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  stdpc5v Structured version   Visualization version   GIF version

Theorem stdpc5v 1941
Description: Version of stdpc5 2201 with a disjoint variable condition, requiring fewer axioms. (Contributed by BJ, 7-Mar-2020.) Revised to shorten 19.21v 1942. (Revised by Wolf Lammen, 12-Jul-2020.)
Assertion
Ref Expression
stdpc5v (∀𝑥(𝜑𝜓) → (𝜑 → ∀𝑥𝜓))
Distinct variable group:   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem stdpc5v
StepHypRef Expression
1 ax-5 1913 . 2 (𝜑 → ∀𝑥𝜑)
2 alim 1813 . 2 (∀𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓))
31, 2syl5 34 1 (∀𝑥(𝜑𝜓) → (𝜑 → ∀𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-4 1812  ax-5 1913
This theorem is referenced by:  19.21v  1942  wl-moteq  35673  axc11next  42024
  Copyright terms: Public domain W3C validator