Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-moteq Structured version   Visualization version   GIF version

Theorem wl-moteq 35600
Description: Change bound variable. Uses only Tarski's FOL axiom schemes. Part of Lemma 7 of [KalishMontague] p. 86. (Contributed by Wolf Lammen, 5-Mar-2023.)
Assertion
Ref Expression
wl-moteq (∃*𝑥⊤ → 𝑦 = 𝑧)

Proof of Theorem wl-moteq
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 df-mo 2540 . 2 (∃*𝑥⊤ ↔ ∃𝑤𝑥(⊤ → 𝑥 = 𝑤))
2 stdpc5v 1942 . . . 4 (∀𝑥(⊤ → 𝑥 = 𝑤) → (⊤ → ∀𝑥 𝑥 = 𝑤))
3 tru 1543 . . . . . 6
43pm2.24i 150 . . . . 5 (¬ ⊤ → 𝑦 = 𝑧)
5 aeveq 2060 . . . . 5 (∀𝑥 𝑥 = 𝑤𝑦 = 𝑧)
64, 5ja 186 . . . 4 ((⊤ → ∀𝑥 𝑥 = 𝑤) → 𝑦 = 𝑧)
72, 6syl 17 . . 3 (∀𝑥(⊤ → 𝑥 = 𝑤) → 𝑦 = 𝑧)
87exlimiv 1934 . 2 (∃𝑤𝑥(⊤ → 𝑥 = 𝑤) → 𝑦 = 𝑧)
91, 8sylbi 216 1 (∃*𝑥⊤ → 𝑦 = 𝑧)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  wtru 1540  wex 1783  ∃*wmo 2538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-mo 2540
This theorem is referenced by:  wl-motae  35601
  Copyright terms: Public domain W3C validator