| Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-moteq | Structured version Visualization version GIF version | ||
| Description: Change bound variable. Uses only Tarski's FOL axiom schemes. Part of Lemma 7 of [KalishMontague] p. 86. (Contributed by Wolf Lammen, 5-Mar-2023.) |
| Ref | Expression |
|---|---|
| wl-moteq | ⊢ (∃*𝑥⊤ → 𝑦 = 𝑧) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mo 2538 | . 2 ⊢ (∃*𝑥⊤ ↔ ∃𝑤∀𝑥(⊤ → 𝑥 = 𝑤)) | |
| 2 | stdpc5v 1937 | . . . 4 ⊢ (∀𝑥(⊤ → 𝑥 = 𝑤) → (⊤ → ∀𝑥 𝑥 = 𝑤)) | |
| 3 | tru 1543 | . . . . . 6 ⊢ ⊤ | |
| 4 | 3 | pm2.24i 150 | . . . . 5 ⊢ (¬ ⊤ → 𝑦 = 𝑧) |
| 5 | aeveq 2055 | . . . . 5 ⊢ (∀𝑥 𝑥 = 𝑤 → 𝑦 = 𝑧) | |
| 6 | 4, 5 | ja 186 | . . . 4 ⊢ ((⊤ → ∀𝑥 𝑥 = 𝑤) → 𝑦 = 𝑧) |
| 7 | 2, 6 | syl 17 | . . 3 ⊢ (∀𝑥(⊤ → 𝑥 = 𝑤) → 𝑦 = 𝑧) |
| 8 | 7 | exlimiv 1929 | . 2 ⊢ (∃𝑤∀𝑥(⊤ → 𝑥 = 𝑤) → 𝑦 = 𝑧) |
| 9 | 1, 8 | sylbi 217 | 1 ⊢ (∃*𝑥⊤ → 𝑦 = 𝑧) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1537 ⊤wtru 1540 ∃wex 1778 ∃*wmo 2536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-mo 2538 |
| This theorem is referenced by: wl-motae 37491 |
| Copyright terms: Public domain | W3C validator |