Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-moteq | Structured version Visualization version GIF version |
Description: Change bound variable. Uses only Tarski's FOL axiom schemes. Part of Lemma 7 of [KalishMontague] p. 86. (Contributed by Wolf Lammen, 5-Mar-2023.) |
Ref | Expression |
---|---|
wl-moteq | ⊢ (∃*𝑥⊤ → 𝑦 = 𝑧) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mo 2540 | . 2 ⊢ (∃*𝑥⊤ ↔ ∃𝑤∀𝑥(⊤ → 𝑥 = 𝑤)) | |
2 | stdpc5v 1942 | . . . 4 ⊢ (∀𝑥(⊤ → 𝑥 = 𝑤) → (⊤ → ∀𝑥 𝑥 = 𝑤)) | |
3 | tru 1543 | . . . . . 6 ⊢ ⊤ | |
4 | 3 | pm2.24i 150 | . . . . 5 ⊢ (¬ ⊤ → 𝑦 = 𝑧) |
5 | aeveq 2060 | . . . . 5 ⊢ (∀𝑥 𝑥 = 𝑤 → 𝑦 = 𝑧) | |
6 | 4, 5 | ja 186 | . . . 4 ⊢ ((⊤ → ∀𝑥 𝑥 = 𝑤) → 𝑦 = 𝑧) |
7 | 2, 6 | syl 17 | . . 3 ⊢ (∀𝑥(⊤ → 𝑥 = 𝑤) → 𝑦 = 𝑧) |
8 | 7 | exlimiv 1934 | . 2 ⊢ (∃𝑤∀𝑥(⊤ → 𝑥 = 𝑤) → 𝑦 = 𝑧) |
9 | 1, 8 | sylbi 216 | 1 ⊢ (∃*𝑥⊤ → 𝑦 = 𝑧) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 ⊤wtru 1540 ∃wex 1783 ∃*wmo 2538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-mo 2540 |
This theorem is referenced by: wl-motae 35601 |
Copyright terms: Public domain | W3C validator |