Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-moteq Structured version   Visualization version   GIF version

Theorem wl-moteq 33837
Description: Change bound variable. Uses only Tarski's FOL axiom schemes. Part of Lemma 7 of [KalishMontague] p. 86. (Contributed by Wolf Lammen, 5-Mar-2023.)
Assertion
Ref Expression
wl-moteq (∃*𝑥⊤ → 𝑦 = 𝑧)

Proof of Theorem wl-moteq
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 df-mo 2605 . 2 (∃*𝑥⊤ ↔ ∃𝑤𝑥(⊤ → 𝑥 = 𝑤))
2 stdpc5v 2037 . . . 4 (∀𝑥(⊤ → 𝑥 = 𝑤) → (⊤ → ∀𝑥 𝑥 = 𝑤))
3 tru 1661 . . . . . 6
43pm2.24i 148 . . . . 5 (¬ ⊤ → 𝑦 = 𝑧)
5 aeveq 2156 . . . . 5 (∀𝑥 𝑥 = 𝑤𝑦 = 𝑧)
64, 5ja 175 . . . 4 ((⊤ → ∀𝑥 𝑥 = 𝑤) → 𝑦 = 𝑧)
72, 6syl 17 . . 3 (∀𝑥(⊤ → 𝑥 = 𝑤) → 𝑦 = 𝑧)
87exlimiv 2029 . 2 (∃𝑤𝑥(⊤ → 𝑥 = 𝑤) → 𝑦 = 𝑧)
91, 8sylbi 209 1 (∃*𝑥⊤ → 𝑦 = 𝑧)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1654  wtru 1657  wex 1878  ∃*wmo 2603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112
This theorem depends on definitions:  df-bi 199  df-an 387  df-tru 1660  df-ex 1879  df-mo 2605
This theorem is referenced by:  wl-motae  33838
  Copyright terms: Public domain W3C validator