| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.21v | Structured version Visualization version GIF version | ||
| Description: Version of 19.21 2208 with a disjoint variable condition, requiring
fewer
axioms.
Notational convention: We sometimes suffix with "v" the label of a theorem using a distinct variable ("dv") condition instead of a nonfreeness hypothesis such as Ⅎ𝑥𝜑. Conversely, we sometimes suffix with "f" the label of a theorem introducing such a nonfreeness hypothesis ("f" stands for "not free in", see df-nf 1784) instead of a disjoint variable condition. For instance, 19.21v 1939 versus 19.21 2208 and vtoclf 3548 versus vtocl 3542. Note that "not free in" is less restrictive than "does not occur in". Note that the version with a disjoint variable condition is easily proved from the version with the corresponding nonfreeness hypothesis, by using nfv 1914. However, the dv version can often be proved from fewer axioms. (Contributed by NM, 21-Jun-1993.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 2-Jan-2020.) (Proof shortened by Wolf Lammen, 12-Jul-2020.) |
| Ref | Expression |
|---|---|
| 19.21v | ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stdpc5v 1938 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (𝜑 → ∀𝑥𝜓)) | |
| 2 | ax5e 1912 | . . . 4 ⊢ (∃𝑥𝜑 → 𝜑) | |
| 3 | 2 | imim1i 63 | . . 3 ⊢ ((𝜑 → ∀𝑥𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓)) |
| 4 | 19.38 1839 | . . 3 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ ((𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) |
| 6 | 1, 5 | impbii 209 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: 19.32v 1940 pm11.53v 1944 19.12vvv 1994 cbvaldvaw 2038 2sb6 2087 sbrimvw 2092 sbal 2170 hbsbwOLD 2173 sbrim 2305 pm11.53 2348 19.12vv 2349 sbhb 2526 r19.21vOLD 3167 r2al 3181 r3al 3183 ralcom4 3272 cbvraldva2 3331 ceqsralt 3500 rspc2gv 3616 elabgt 3656 elabgtOLD 3657 euind 3712 reu2 3713 reuind 3741 sbccomlem 3849 unissb 4920 unissbOLD 4921 dfiin2g 5013 axrep5 5262 asymref 6110 fvn0ssdmfun 7069 dff13 7252 mpo2eqb 7544 xpord3inddlem 8158 findcard3 9295 findcard3OLD 9296 marypha1lem 9450 marypha2lem3 9454 aceq1 10136 kmlem15 10184 cotr2g 15000 bnj864 34958 bnj865 34959 bnj978 34985 bnj1176 35041 bnj1186 35043 dfon2lem8 35813 dffun10 35937 mpobi123f 38191 mptbi12f 38195 sn-axrep5v 42234 unielss 43209 elmapintrab 43567 undmrnresiss 43595 dfhe3 43766 dffrege115 43969 ntrneiiso 44082 ntrneikb 44085 pm10.541 44358 pm10.542 44359 19.21vv 44367 pm11.62 44385 2sbc6g 44406 2rexsb 47097 |
| Copyright terms: Public domain | W3C validator |