| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.21v | Structured version Visualization version GIF version | ||
| Description: Version of 19.21 2210 with a disjoint variable condition, requiring
fewer
axioms.
Notational convention: We sometimes suffix with "v" the label of a theorem using a distinct variable ("dv") condition instead of a nonfreeness hypothesis such as Ⅎ𝑥𝜑. Conversely, we sometimes suffix with "f" the label of a theorem introducing such a nonfreeness hypothesis ("f" stands for "not free in", see df-nf 1785) instead of a disjoint variable condition. For instance, 19.21v 1940 versus 19.21 2210 and vtoclf 3517 versus vtocl 3511. Note that "not free in" is less restrictive than "does not occur in". Note that the version with a disjoint variable condition is easily proved from the version with the corresponding nonfreeness hypothesis, by using nfv 1915. However, the dv version can often be proved from fewer axioms. (Contributed by NM, 21-Jun-1993.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 2-Jan-2020.) (Proof shortened by Wolf Lammen, 12-Jul-2020.) |
| Ref | Expression |
|---|---|
| 19.21v | ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stdpc5v 1939 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (𝜑 → ∀𝑥𝜓)) | |
| 2 | ax5e 1913 | . . . 4 ⊢ (∃𝑥𝜑 → 𝜑) | |
| 3 | 2 | imim1i 63 | . . 3 ⊢ ((𝜑 → ∀𝑥𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓)) |
| 4 | 19.38 1840 | . . 3 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ ((𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) |
| 6 | 1, 5 | impbii 209 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 ∃wex 1780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 |
| This theorem is referenced by: 19.32v 1941 pm11.53v 1945 19.12vvv 1995 cbvaldvaw 2039 2sb6 2089 sbrimvw 2094 sbal 2172 hbsbwOLD 2175 sbrim 2306 pm11.53 2346 19.12vv 2347 sbhb 2521 r2al 3168 r3al 3170 ralcom4 3258 cbvraldva2 3314 ceqsralt 3471 rspc2gv 3582 elabgtOLD 3623 elabgtOLDOLD 3624 euind 3678 reu2 3679 reuind 3707 sbccomlem 3815 unissb 4886 dfiin2g 4976 axrep5 5220 asymref 6058 fvn0ssdmfun 7002 dff13 7183 mpo2eqb 7473 xpord3inddlem 8079 findcard3 9162 marypha1lem 9312 marypha2lem3 9316 aceq1 10003 kmlem15 10051 cotr2g 14878 bnj864 34926 bnj865 34927 bnj978 34953 bnj1176 35009 bnj1186 35011 dfon2lem8 35824 dffun10 35948 mpobi123f 38202 mptbi12f 38206 sn-axrep5v 42249 unielss 43251 elmapintrab 43609 undmrnresiss 43637 dfhe3 43808 dffrege115 44011 ntrneiiso 44124 ntrneikb 44127 pm10.541 44400 pm10.542 44401 19.21vv 44409 pm11.62 44427 2sbc6g 44448 2rexsb 47132 |
| Copyright terms: Public domain | W3C validator |