Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 19.21v | Structured version Visualization version GIF version |
Description: Version of 19.21 2205 with a disjoint variable condition, requiring
fewer
axioms.
Notational convention: We sometimes suffix with "v" the label of a theorem using a distinct variable ("dv") condition instead of a non-freeness hypothesis such as Ⅎ𝑥𝜑. Conversely, we sometimes suffix with "f" the label of a theorem introducing such a non-freeness hypothesis ("f" stands for "not free in", see df-nf 1786) instead of a disjoint variable condition. For instance, 19.21v 1940 versus 19.21 2205 and vtoclf 3476 versus vtocl 3477. Note that "not free in" is less restrictive than "does not occur in". Note that the version with a disjoint variable condition is easily proved from the version with the corresponding non-freeness hypothesis, by using nfv 1915. However, the dv version can often be proved from fewer axioms. (Contributed by NM, 21-Jun-1993.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 2-Jan-2020.) (Proof shortened by Wolf Lammen, 12-Jul-2020.) |
Ref | Expression |
---|---|
19.21v | ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stdpc5v 1939 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (𝜑 → ∀𝑥𝜓)) | |
2 | ax5e 1913 | . . . 4 ⊢ (∃𝑥𝜑 → 𝜑) | |
3 | 2 | imim1i 63 | . . 3 ⊢ ((𝜑 → ∀𝑥𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓)) |
4 | 19.38 1840 | . . 3 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) | |
5 | 3, 4 | syl 17 | . 2 ⊢ ((𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) |
6 | 1, 5 | impbii 212 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∀wal 1536 ∃wex 1781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 |
This theorem depends on definitions: df-bi 210 df-ex 1782 |
This theorem is referenced by: 19.32v 1941 pm11.53v 1945 19.12vvv 1995 cbvaldvaw 2045 2sb6 2091 sbrimvw 2099 sbal 2163 hbsbw 2173 cbval2vOLD 2353 pm11.53 2356 19.12vv 2357 cbval2OLD 2422 sbhb 2540 r19.21v 3106 r2al 3130 r3al 3131 ralcom4 3162 cbvraldva2 3368 cbvrexdva2OLD 3370 ceqsralt 3444 rspc2gv 3550 euind 3638 reu2 3639 reuind 3667 unissb 4832 dfiin2g 4921 axrep5 5162 asymref 5948 fvn0ssdmfun 6833 dff13 7005 mpo2eqb 7278 findcard3 8794 marypha1lem 8930 marypha2lem3 8934 aceq1 9577 kmlem15 9624 cotr2g 14383 bnj864 32422 bnj865 32423 bnj978 32449 bnj1176 32505 bnj1186 32507 dfon2lem8 33282 dffun10 33765 wl-dfralv 35286 mpobi123f 35880 mptbi12f 35884 sn-axrep5v 39699 elmapintrab 40649 undmrnresiss 40677 dfhe3 40849 dffrege115 41052 ntrneiiso 41167 ntrneikb 41170 pm10.541 41444 pm10.542 41445 19.21vv 41453 pm11.62 41471 2sbc6g 41492 2rexsb 44024 |
Copyright terms: Public domain | W3C validator |