![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 19.21v | Structured version Visualization version GIF version |
Description: Version of 19.21 2200 with a disjoint variable condition, requiring
fewer
axioms.
Notational convention: We sometimes suffix with "v" the label of a theorem using a distinct variable ("dv") condition instead of a nonfreeness hypothesis such as Ⅎ𝑥𝜑. Conversely, we sometimes suffix with "f" the label of a theorem introducing such a nonfreeness hypothesis ("f" stands for "not free in", see df-nf 1786) instead of a disjoint variable condition. For instance, 19.21v 1942 versus 19.21 2200 and vtoclf 3547 versus vtocl 3549. Note that "not free in" is less restrictive than "does not occur in". Note that the version with a disjoint variable condition is easily proved from the version with the corresponding nonfreeness hypothesis, by using nfv 1917. However, the dv version can often be proved from fewer axioms. (Contributed by NM, 21-Jun-1993.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 2-Jan-2020.) (Proof shortened by Wolf Lammen, 12-Jul-2020.) |
Ref | Expression |
---|---|
19.21v | ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stdpc5v 1941 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (𝜑 → ∀𝑥𝜓)) | |
2 | ax5e 1915 | . . . 4 ⊢ (∃𝑥𝜑 → 𝜑) | |
3 | 2 | imim1i 63 | . . 3 ⊢ ((𝜑 → ∀𝑥𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓)) |
4 | 19.38 1841 | . . 3 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) | |
5 | 3, 4 | syl 17 | . 2 ⊢ ((𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) |
6 | 1, 5 | impbii 208 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1539 ∃wex 1781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 |
This theorem depends on definitions: df-bi 206 df-ex 1782 |
This theorem is referenced by: 19.32v 1943 pm11.53v 1947 19.12vvv 1992 cbvaldvaw 2041 2sb6 2089 sbrimvw 2094 sbal 2159 hbsbw 2169 sbrim 2300 pm11.53 2342 19.12vv 2343 sbhb 2520 r19.21vOLD 3180 r2al 3194 r3al 3196 ralcom4 3283 ralcom4OLD 3284 nfra2wOLD 3297 cbvraldva2 3344 ceqsralt 3506 rspc2gv 3620 elabgt 3661 euind 3719 reu2 3720 reuind 3748 unissb 4942 unissbOLD 4943 dfiin2g 5034 axrep5 5290 asymref 6114 fvn0ssdmfun 7073 dff13 7250 mpo2eqb 7537 xpord3inddlem 8136 findcard3 9281 findcard3OLD 9282 marypha1lem 9424 marypha2lem3 9428 aceq1 10108 kmlem15 10155 cotr2g 14919 bnj864 33921 bnj865 33922 bnj978 33948 bnj1176 34004 bnj1186 34006 dfon2lem8 34750 dffun10 34874 mpobi123f 37018 mptbi12f 37022 sn-axrep5v 41029 unielss 41952 elmapintrab 42312 undmrnresiss 42340 dfhe3 42511 dffrege115 42714 ntrneiiso 42827 ntrneikb 42830 pm10.541 43111 pm10.542 43112 19.21vv 43120 pm11.62 43138 2sbc6g 43159 2rexsb 45795 |
Copyright terms: Public domain | W3C validator |