| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.21v | Structured version Visualization version GIF version | ||
| Description: Version of 19.21 2208 with a disjoint variable condition, requiring
fewer
axioms.
Notational convention: We sometimes suffix with "v" the label of a theorem using a distinct variable ("dv") condition instead of a nonfreeness hypothesis such as Ⅎ𝑥𝜑. Conversely, we sometimes suffix with "f" the label of a theorem introducing such a nonfreeness hypothesis ("f" stands for "not free in", see df-nf 1784) instead of a disjoint variable condition. For instance, 19.21v 1939 versus 19.21 2208 and vtoclf 3530 versus vtocl 3524. Note that "not free in" is less restrictive than "does not occur in". Note that the version with a disjoint variable condition is easily proved from the version with the corresponding nonfreeness hypothesis, by using nfv 1914. However, the dv version can often be proved from fewer axioms. (Contributed by NM, 21-Jun-1993.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 2-Jan-2020.) (Proof shortened by Wolf Lammen, 12-Jul-2020.) |
| Ref | Expression |
|---|---|
| 19.21v | ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stdpc5v 1938 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (𝜑 → ∀𝑥𝜓)) | |
| 2 | ax5e 1912 | . . . 4 ⊢ (∃𝑥𝜑 → 𝜑) | |
| 3 | 2 | imim1i 63 | . . 3 ⊢ ((𝜑 → ∀𝑥𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓)) |
| 4 | 19.38 1839 | . . 3 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ ((𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) |
| 6 | 1, 5 | impbii 209 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: 19.32v 1940 pm11.53v 1944 19.12vvv 1994 cbvaldvaw 2038 2sb6 2087 sbrimvw 2092 sbal 2170 hbsbwOLD 2173 sbrim 2304 pm11.53 2344 19.12vv 2345 sbhb 2519 r19.21vOLD 3159 r2al 3173 r3al 3175 ralcom4 3263 cbvraldva2 3321 ceqsralt 3482 rspc2gv 3598 elabgtOLD 3639 elabgtOLDOLD 3640 euind 3695 reu2 3696 reuind 3724 sbccomlem 3832 unissb 4903 unissbOLD 4904 dfiin2g 4996 axrep5 5242 asymref 6089 fvn0ssdmfun 7046 dff13 7229 mpo2eqb 7521 xpord3inddlem 8133 findcard3 9229 findcard3OLD 9230 marypha1lem 9384 marypha2lem3 9388 aceq1 10070 kmlem15 10118 cotr2g 14942 bnj864 34912 bnj865 34913 bnj978 34939 bnj1176 34995 bnj1186 34997 dfon2lem8 35778 dffun10 35902 mpobi123f 38156 mptbi12f 38160 sn-axrep5v 42204 unielss 43207 elmapintrab 43565 undmrnresiss 43593 dfhe3 43764 dffrege115 43967 ntrneiiso 44080 ntrneikb 44083 pm10.541 44356 pm10.542 44357 19.21vv 44365 pm11.62 44383 2sbc6g 44404 2rexsb 47102 |
| Copyright terms: Public domain | W3C validator |