Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 19.21v | Structured version Visualization version GIF version |
Description: Version of 19.21 2203 with a disjoint variable condition, requiring
fewer
axioms.
Notational convention: We sometimes suffix with "v" the label of a theorem using a distinct variable ("dv") condition instead of a nonfreeness hypothesis such as Ⅎ𝑥𝜑. Conversely, we sometimes suffix with "f" the label of a theorem introducing such a nonfreeness hypothesis ("f" stands for "not free in", see df-nf 1788) instead of a disjoint variable condition. For instance, 19.21v 1943 versus 19.21 2203 and vtoclf 3487 versus vtocl 3488. Note that "not free in" is less restrictive than "does not occur in". Note that the version with a disjoint variable condition is easily proved from the version with the corresponding nonfreeness hypothesis, by using nfv 1918. However, the dv version can often be proved from fewer axioms. (Contributed by NM, 21-Jun-1993.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 2-Jan-2020.) (Proof shortened by Wolf Lammen, 12-Jul-2020.) |
Ref | Expression |
---|---|
19.21v | ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stdpc5v 1942 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (𝜑 → ∀𝑥𝜓)) | |
2 | ax5e 1916 | . . . 4 ⊢ (∃𝑥𝜑 → 𝜑) | |
3 | 2 | imim1i 63 | . . 3 ⊢ ((𝜑 → ∀𝑥𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓)) |
4 | 19.38 1842 | . . 3 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) | |
5 | 3, 4 | syl 17 | . 2 ⊢ ((𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) |
6 | 1, 5 | impbii 208 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-ex 1784 |
This theorem is referenced by: 19.32v 1944 pm11.53v 1948 19.12vvv 1993 cbvaldvaw 2042 2sb6 2090 sbrimvw 2096 sbal 2161 hbsbw 2171 cbval2vOLD 2343 pm11.53 2346 19.12vv 2347 sbhb 2525 r19.21v 3100 r2al 3124 r3al 3125 nfra2wOLD 3152 ralcom4 3161 ralcom4OLD 3162 cbvraldva2 3381 ceqsralt 3453 rspc2gv 3561 elabgt 3596 euind 3654 reu2 3655 reuind 3683 unissb 4870 dfiin2g 4958 axrep5 5211 asymref 6010 fvn0ssdmfun 6934 dff13 7109 mpo2eqb 7384 findcard3 8987 marypha1lem 9122 marypha2lem3 9126 aceq1 9804 kmlem15 9851 cotr2g 14615 bnj864 32802 bnj865 32803 bnj978 32829 bnj1176 32885 bnj1186 32887 dfon2lem8 33672 dffun10 34143 mpobi123f 36247 mptbi12f 36251 sn-axrep5v 40113 elmapintrab 41073 undmrnresiss 41101 dfhe3 41272 dffrege115 41475 ntrneiiso 41590 ntrneikb 41593 pm10.541 41874 pm10.542 41875 19.21vv 41883 pm11.62 41901 2sbc6g 41922 2rexsb 44480 |
Copyright terms: Public domain | W3C validator |