Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 19.21v | Structured version Visualization version GIF version |
Description: Version of 19.21 2201 with a disjoint variable condition, requiring
fewer
axioms.
Notational convention: We sometimes suffix with "v" the label of a theorem using a distinct variable ("dv") condition instead of a nonfreeness hypothesis such as Ⅎ𝑥𝜑. Conversely, we sometimes suffix with "f" the label of a theorem introducing such a nonfreeness hypothesis ("f" stands for "not free in", see df-nf 1787) instead of a disjoint variable condition. For instance, 19.21v 1943 versus 19.21 2201 and vtoclf 3498 versus vtocl 3499. Note that "not free in" is less restrictive than "does not occur in". Note that the version with a disjoint variable condition is easily proved from the version with the corresponding nonfreeness hypothesis, by using nfv 1918. However, the dv version can often be proved from fewer axioms. (Contributed by NM, 21-Jun-1993.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 2-Jan-2020.) (Proof shortened by Wolf Lammen, 12-Jul-2020.) |
Ref | Expression |
---|---|
19.21v | ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stdpc5v 1942 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (𝜑 → ∀𝑥𝜓)) | |
2 | ax5e 1916 | . . . 4 ⊢ (∃𝑥𝜑 → 𝜑) | |
3 | 2 | imim1i 63 | . . 3 ⊢ ((𝜑 → ∀𝑥𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓)) |
4 | 19.38 1842 | . . 3 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) | |
5 | 3, 4 | syl 17 | . 2 ⊢ ((𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) |
6 | 1, 5 | impbii 208 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-ex 1783 |
This theorem is referenced by: 19.32v 1944 pm11.53v 1948 19.12vvv 1993 cbvaldvaw 2042 2sb6 2090 sbrimvw 2095 sbal 2160 hbsbw 2170 sbrim 2302 cbval2vOLD 2342 pm11.53 2345 19.12vv 2346 sbhb 2526 r19.21vOLD 3115 r2al 3119 r3al 3120 nfra2wOLD 3156 ralcom4 3165 ralcom4OLD 3166 moel 3359 cbvraldva2 3393 ceqsralt 3464 rspc2gv 3570 elabgt 3604 euind 3660 reu2 3661 reuind 3689 unissb 4874 dfiin2g 4963 axrep5 5216 asymref 6026 fvn0ssdmfun 6961 dff13 7137 mpo2eqb 7415 findcard3 9066 marypha1lem 9201 marypha2lem3 9205 aceq1 9882 kmlem15 9929 cotr2g 14696 bnj864 32911 bnj865 32912 bnj978 32938 bnj1176 32994 bnj1186 32996 dfon2lem8 33775 dffun10 34225 mpobi123f 36329 mptbi12f 36333 sn-axrep5v 40192 elmapintrab 41191 undmrnresiss 41219 dfhe3 41390 dffrege115 41593 ntrneiiso 41708 ntrneikb 41711 pm10.541 41992 pm10.542 41993 19.21vv 42001 pm11.62 42019 2sbc6g 42040 2rexsb 44604 |
Copyright terms: Public domain | W3C validator |