| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.21v | Structured version Visualization version GIF version | ||
| Description: Version of 19.21 2208 with a disjoint variable condition, requiring
fewer
axioms.
Notational convention: We sometimes suffix with "v" the label of a theorem using a distinct variable ("dv") condition instead of a nonfreeness hypothesis such as Ⅎ𝑥𝜑. Conversely, we sometimes suffix with "f" the label of a theorem introducing such a nonfreeness hypothesis ("f" stands for "not free in", see df-nf 1784) instead of a disjoint variable condition. For instance, 19.21v 1939 versus 19.21 2208 and vtoclf 3533 versus vtocl 3527. Note that "not free in" is less restrictive than "does not occur in". Note that the version with a disjoint variable condition is easily proved from the version with the corresponding nonfreeness hypothesis, by using nfv 1914. However, the dv version can often be proved from fewer axioms. (Contributed by NM, 21-Jun-1993.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 2-Jan-2020.) (Proof shortened by Wolf Lammen, 12-Jul-2020.) |
| Ref | Expression |
|---|---|
| 19.21v | ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stdpc5v 1938 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (𝜑 → ∀𝑥𝜓)) | |
| 2 | ax5e 1912 | . . . 4 ⊢ (∃𝑥𝜑 → 𝜑) | |
| 3 | 2 | imim1i 63 | . . 3 ⊢ ((𝜑 → ∀𝑥𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓)) |
| 4 | 19.38 1839 | . . 3 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ ((𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) |
| 6 | 1, 5 | impbii 209 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: 19.32v 1940 pm11.53v 1944 19.12vvv 1994 cbvaldvaw 2038 2sb6 2087 sbrimvw 2092 sbal 2170 hbsbwOLD 2173 sbrim 2304 pm11.53 2344 19.12vv 2345 sbhb 2520 r19.21vOLD 3160 r2al 3174 r3al 3176 ralcom4 3264 cbvraldva2 3323 ceqsralt 3485 rspc2gv 3601 elabgtOLD 3642 elabgtOLDOLD 3643 euind 3698 reu2 3699 reuind 3727 sbccomlem 3835 unissb 4906 unissbOLD 4907 dfiin2g 4999 axrep5 5245 asymref 6092 fvn0ssdmfun 7049 dff13 7232 mpo2eqb 7524 xpord3inddlem 8136 findcard3 9236 findcard3OLD 9237 marypha1lem 9391 marypha2lem3 9395 aceq1 10077 kmlem15 10125 cotr2g 14949 bnj864 34919 bnj865 34920 bnj978 34946 bnj1176 35002 bnj1186 35004 dfon2lem8 35785 dffun10 35909 mpobi123f 38163 mptbi12f 38167 sn-axrep5v 42211 unielss 43214 elmapintrab 43572 undmrnresiss 43600 dfhe3 43771 dffrege115 43974 ntrneiiso 44087 ntrneikb 44090 pm10.541 44363 pm10.542 44364 19.21vv 44372 pm11.62 44390 2sbc6g 44411 2rexsb 47106 |
| Copyright terms: Public domain | W3C validator |