![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 19.21v | Structured version Visualization version GIF version |
Description: Version of 19.21 2201 with a disjoint variable condition, requiring
fewer
axioms.
Notational convention: We sometimes suffix with "v" the label of a theorem using a distinct variable ("dv") condition instead of a nonfreeness hypothesis such as Ⅎ𝑥𝜑. Conversely, we sometimes suffix with "f" the label of a theorem introducing such a nonfreeness hypothesis ("f" stands for "not free in", see df-nf 1787) instead of a disjoint variable condition. For instance, 19.21v 1943 versus 19.21 2201 and vtoclf 3548 versus vtocl 3550. Note that "not free in" is less restrictive than "does not occur in". Note that the version with a disjoint variable condition is easily proved from the version with the corresponding nonfreeness hypothesis, by using nfv 1918. However, the dv version can often be proved from fewer axioms. (Contributed by NM, 21-Jun-1993.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 2-Jan-2020.) (Proof shortened by Wolf Lammen, 12-Jul-2020.) |
Ref | Expression |
---|---|
19.21v | ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stdpc5v 1942 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (𝜑 → ∀𝑥𝜓)) | |
2 | ax5e 1916 | . . . 4 ⊢ (∃𝑥𝜑 → 𝜑) | |
3 | 2 | imim1i 63 | . . 3 ⊢ ((𝜑 → ∀𝑥𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓)) |
4 | 19.38 1842 | . . 3 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) | |
5 | 3, 4 | syl 17 | . 2 ⊢ ((𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) |
6 | 1, 5 | impbii 208 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1540 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-ex 1783 |
This theorem is referenced by: 19.32v 1944 pm11.53v 1948 19.12vvv 1993 cbvaldvaw 2042 2sb6 2090 sbrimvw 2095 sbal 2160 hbsbw 2170 sbrim 2301 pm11.53 2343 19.12vv 2344 sbhb 2521 r19.21vOLD 3181 r2al 3195 r3al 3197 ralcom4 3284 ralcom4OLD 3285 nfra2wOLD 3298 cbvraldva2 3345 ceqsralt 3507 rspc2gv 3622 elabgt 3663 euind 3721 reu2 3722 reuind 3750 unissb 4944 unissbOLD 4945 dfiin2g 5036 axrep5 5292 asymref 6118 fvn0ssdmfun 7077 dff13 7254 mpo2eqb 7541 xpord3inddlem 8140 findcard3 9285 findcard3OLD 9286 marypha1lem 9428 marypha2lem3 9432 aceq1 10112 kmlem15 10159 cotr2g 14923 bnj864 33964 bnj865 33965 bnj978 33991 bnj1176 34047 bnj1186 34049 dfon2lem8 34793 dffun10 34917 mpobi123f 37078 mptbi12f 37082 sn-axrep5v 41081 unielss 42015 elmapintrab 42375 undmrnresiss 42403 dfhe3 42574 dffrege115 42777 ntrneiiso 42890 ntrneikb 42893 pm10.541 43174 pm10.542 43175 19.21vv 43183 pm11.62 43201 2sbc6g 43222 2rexsb 45857 |
Copyright terms: Public domain | W3C validator |