| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.21v | Structured version Visualization version GIF version | ||
| Description: Version of 19.21 2208 with a disjoint variable condition, requiring
fewer
axioms.
Notational convention: We sometimes suffix with "v" the label of a theorem using a distinct variable ("dv") condition instead of a nonfreeness hypothesis such as Ⅎ𝑥𝜑. Conversely, we sometimes suffix with "f" the label of a theorem introducing such a nonfreeness hypothesis ("f" stands for "not free in", see df-nf 1784) instead of a disjoint variable condition. For instance, 19.21v 1939 versus 19.21 2208 and vtoclf 3527 versus vtocl 3521. Note that "not free in" is less restrictive than "does not occur in". Note that the version with a disjoint variable condition is easily proved from the version with the corresponding nonfreeness hypothesis, by using nfv 1914. However, the dv version can often be proved from fewer axioms. (Contributed by NM, 21-Jun-1993.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 2-Jan-2020.) (Proof shortened by Wolf Lammen, 12-Jul-2020.) |
| Ref | Expression |
|---|---|
| 19.21v | ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stdpc5v 1938 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (𝜑 → ∀𝑥𝜓)) | |
| 2 | ax5e 1912 | . . . 4 ⊢ (∃𝑥𝜑 → 𝜑) | |
| 3 | 2 | imim1i 63 | . . 3 ⊢ ((𝜑 → ∀𝑥𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓)) |
| 4 | 19.38 1839 | . . 3 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ ((𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) |
| 6 | 1, 5 | impbii 209 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: 19.32v 1940 pm11.53v 1944 19.12vvv 1994 cbvaldvaw 2038 2sb6 2087 sbrimvw 2092 sbal 2170 hbsbwOLD 2173 sbrim 2304 pm11.53 2344 19.12vv 2345 sbhb 2519 r2al 3171 r3al 3173 ralcom4 3261 cbvraldva2 3318 ceqsralt 3479 rspc2gv 3595 elabgtOLD 3636 elabgtOLDOLD 3637 euind 3692 reu2 3693 reuind 3721 sbccomlem 3829 unissb 4899 unissbOLD 4900 dfiin2g 4991 axrep5 5237 asymref 6077 fvn0ssdmfun 7028 dff13 7211 mpo2eqb 7501 xpord3inddlem 8110 findcard3 9205 findcard3OLD 9206 marypha1lem 9360 marypha2lem3 9364 aceq1 10046 kmlem15 10094 cotr2g 14918 bnj864 34885 bnj865 34886 bnj978 34912 bnj1176 34968 bnj1186 34970 dfon2lem8 35751 dffun10 35875 mpobi123f 38129 mptbi12f 38133 sn-axrep5v 42177 unielss 43180 elmapintrab 43538 undmrnresiss 43566 dfhe3 43737 dffrege115 43940 ntrneiiso 44053 ntrneikb 44056 pm10.541 44329 pm10.542 44330 19.21vv 44338 pm11.62 44356 2sbc6g 44377 2rexsb 47075 |
| Copyright terms: Public domain | W3C validator |