| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.21v | Structured version Visualization version GIF version | ||
| Description: Version of 19.21 2208 with a disjoint variable condition, requiring
fewer
axioms.
Notational convention: We sometimes suffix with "v" the label of a theorem using a distinct variable ("dv") condition instead of a nonfreeness hypothesis such as Ⅎ𝑥𝜑. Conversely, we sometimes suffix with "f" the label of a theorem introducing such a nonfreeness hypothesis ("f" stands for "not free in", see df-nf 1784) instead of a disjoint variable condition. For instance, 19.21v 1939 versus 19.21 2208 and vtoclf 3519 versus vtocl 3513. Note that "not free in" is less restrictive than "does not occur in". Note that the version with a disjoint variable condition is easily proved from the version with the corresponding nonfreeness hypothesis, by using nfv 1914. However, the dv version can often be proved from fewer axioms. (Contributed by NM, 21-Jun-1993.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 2-Jan-2020.) (Proof shortened by Wolf Lammen, 12-Jul-2020.) |
| Ref | Expression |
|---|---|
| 19.21v | ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stdpc5v 1938 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (𝜑 → ∀𝑥𝜓)) | |
| 2 | ax5e 1912 | . . . 4 ⊢ (∃𝑥𝜑 → 𝜑) | |
| 3 | 2 | imim1i 63 | . . 3 ⊢ ((𝜑 → ∀𝑥𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓)) |
| 4 | 19.38 1839 | . . 3 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ ((𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) |
| 6 | 1, 5 | impbii 209 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: 19.32v 1940 pm11.53v 1944 19.12vvv 1994 cbvaldvaw 2038 2sb6 2087 sbrimvw 2092 sbal 2170 hbsbwOLD 2173 sbrim 2304 pm11.53 2344 19.12vv 2345 sbhb 2519 r2al 3165 r3al 3167 ralcom4 3255 cbvraldva2 3311 ceqsralt 3471 rspc2gv 3587 elabgtOLD 3628 elabgtOLDOLD 3629 euind 3684 reu2 3685 reuind 3713 sbccomlem 3821 unissb 4890 dfiin2g 4981 axrep5 5226 asymref 6065 fvn0ssdmfun 7008 dff13 7191 mpo2eqb 7481 xpord3inddlem 8087 findcard3 9172 marypha1lem 9323 marypha2lem3 9327 aceq1 10011 kmlem15 10059 cotr2g 14883 bnj864 34889 bnj865 34890 bnj978 34916 bnj1176 34972 bnj1186 34974 dfon2lem8 35764 dffun10 35888 mpobi123f 38142 mptbi12f 38146 sn-axrep5v 42189 unielss 43191 elmapintrab 43549 undmrnresiss 43577 dfhe3 43748 dffrege115 43951 ntrneiiso 44064 ntrneikb 44067 pm10.541 44340 pm10.542 44341 19.21vv 44349 pm11.62 44367 2sbc6g 44388 2rexsb 47085 |
| Copyright terms: Public domain | W3C validator |