![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 19.21v | Structured version Visualization version GIF version |
Description: Version of 19.21 2205 with a disjoint variable condition, requiring
fewer
axioms.
Notational convention: We sometimes suffix with "v" the label of a theorem using a distinct variable ("dv") condition instead of a nonfreeness hypothesis such as Ⅎ𝑥𝜑. Conversely, we sometimes suffix with "f" the label of a theorem introducing such a nonfreeness hypothesis ("f" stands for "not free in", see df-nf 1781) instead of a disjoint variable condition. For instance, 19.21v 1937 versus 19.21 2205 and vtoclf 3564 versus vtocl 3558. Note that "not free in" is less restrictive than "does not occur in". Note that the version with a disjoint variable condition is easily proved from the version with the corresponding nonfreeness hypothesis, by using nfv 1912. However, the dv version can often be proved from fewer axioms. (Contributed by NM, 21-Jun-1993.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 2-Jan-2020.) (Proof shortened by Wolf Lammen, 12-Jul-2020.) |
Ref | Expression |
---|---|
19.21v | ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stdpc5v 1936 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (𝜑 → ∀𝑥𝜓)) | |
2 | ax5e 1910 | . . . 4 ⊢ (∃𝑥𝜑 → 𝜑) | |
3 | 2 | imim1i 63 | . . 3 ⊢ ((𝜑 → ∀𝑥𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓)) |
4 | 19.38 1836 | . . 3 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) | |
5 | 3, 4 | syl 17 | . 2 ⊢ ((𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) |
6 | 1, 5 | impbii 209 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 ∃wex 1776 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 |
This theorem depends on definitions: df-bi 207 df-ex 1777 |
This theorem is referenced by: 19.32v 1938 pm11.53v 1942 19.12vvv 1986 cbvaldvaw 2035 2sb6 2084 sbrimvw 2089 sbal 2167 hbsbwOLD 2170 sbrim 2303 pm11.53 2347 19.12vv 2348 sbhb 2524 r19.21vOLD 3179 r2al 3193 r3al 3195 ralcom4 3284 ralcom4OLD 3285 nfra2wOLD 3298 cbvraldva2 3346 ceqsralt 3514 rspc2gv 3632 elabgt 3672 elabgtOLD 3673 euind 3733 reu2 3734 reuind 3762 sbccomlem 3878 unissb 4944 unissbOLD 4945 dfiin2g 5037 axrep5 5293 asymref 6139 fvn0ssdmfun 7094 dff13 7275 mpo2eqb 7565 xpord3inddlem 8178 findcard3 9316 findcard3OLD 9317 marypha1lem 9471 marypha2lem3 9475 aceq1 10155 kmlem15 10203 cotr2g 15012 bnj864 34915 bnj865 34916 bnj978 34942 bnj1176 34998 bnj1186 35000 dfon2lem8 35772 dffun10 35896 mpobi123f 38149 mptbi12f 38153 sn-axrep5v 42234 unielss 43207 elmapintrab 43566 undmrnresiss 43594 dfhe3 43765 dffrege115 43968 ntrneiiso 44081 ntrneikb 44084 pm10.541 44363 pm10.542 44364 19.21vv 44372 pm11.62 44390 2sbc6g 44411 2rexsb 47051 |
Copyright terms: Public domain | W3C validator |