![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 19.21v | Structured version Visualization version GIF version |
Description: Version of 19.21 2208 with a disjoint variable condition, requiring
fewer
axioms.
Notational convention: We sometimes suffix with "v" the label of a theorem using a distinct variable ("dv") condition instead of a nonfreeness hypothesis such as Ⅎ𝑥𝜑. Conversely, we sometimes suffix with "f" the label of a theorem introducing such a nonfreeness hypothesis ("f" stands for "not free in", see df-nf 1782) instead of a disjoint variable condition. For instance, 19.21v 1938 versus 19.21 2208 and vtoclf 3576 versus vtocl 3570. Note that "not free in" is less restrictive than "does not occur in". Note that the version with a disjoint variable condition is easily proved from the version with the corresponding nonfreeness hypothesis, by using nfv 1913. However, the dv version can often be proved from fewer axioms. (Contributed by NM, 21-Jun-1993.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 2-Jan-2020.) (Proof shortened by Wolf Lammen, 12-Jul-2020.) |
Ref | Expression |
---|---|
19.21v | ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stdpc5v 1937 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (𝜑 → ∀𝑥𝜓)) | |
2 | ax5e 1911 | . . . 4 ⊢ (∃𝑥𝜑 → 𝜑) | |
3 | 2 | imim1i 63 | . . 3 ⊢ ((𝜑 → ∀𝑥𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓)) |
4 | 19.38 1837 | . . 3 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) | |
5 | 3, 4 | syl 17 | . 2 ⊢ ((𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) |
6 | 1, 5 | impbii 209 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 ∃wex 1777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 |
This theorem depends on definitions: df-bi 207 df-ex 1778 |
This theorem is referenced by: 19.32v 1939 pm11.53v 1943 19.12vvv 1988 cbvaldvaw 2037 2sb6 2086 sbrimvw 2091 sbal 2170 hbsbwOLD 2173 sbrim 2308 pm11.53 2352 19.12vv 2353 sbhb 2529 r19.21vOLD 3187 r2al 3201 r3al 3203 ralcom4 3292 ralcom4OLD 3293 nfra2wOLD 3306 cbvraldva2 3356 ceqsralt 3524 rspc2gv 3645 elabgt 3685 elabgtOLD 3686 euind 3746 reu2 3747 reuind 3775 sbccomlem 3891 unissb 4963 unissbOLD 4964 dfiin2g 5055 axrep5 5309 asymref 6148 fvn0ssdmfun 7108 dff13 7292 mpo2eqb 7582 xpord3inddlem 8195 findcard3 9346 findcard3OLD 9347 marypha1lem 9502 marypha2lem3 9506 aceq1 10186 kmlem15 10234 cotr2g 15025 bnj864 34898 bnj865 34899 bnj978 34925 bnj1176 34981 bnj1186 34983 dfon2lem8 35754 dffun10 35878 mpobi123f 38122 mptbi12f 38126 sn-axrep5v 42209 unielss 43179 elmapintrab 43538 undmrnresiss 43566 dfhe3 43737 dffrege115 43940 ntrneiiso 44053 ntrneikb 44056 pm10.541 44336 pm10.542 44337 19.21vv 44345 pm11.62 44363 2sbc6g 44384 2rexsb 47016 |
Copyright terms: Public domain | W3C validator |