MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  stdpc5 Structured version   Visualization version   GIF version

Theorem stdpc5 2208
Description: An axiom scheme of standard predicate calculus that emulates Axiom 5 of [Mendelson] p. 69. The hypothesis 𝑥𝜑 can be thought of as emulating "𝑥 is not free in 𝜑". With this definition, the meaning of "not free" is less restrictive than the usual textbook definition; for example 𝑥 would not (for us) be free in 𝑥 = 𝑥 by nfequid 2020. This theorem scheme can be proved as a metatheorem of Mendelson's axiom system, even though it is slightly stronger than his Axiom 5. See stdpc5v 1939 for a version requiring fewer axioms. (Contributed by NM, 22-Sep-1993.) (Revised by Mario Carneiro, 12-Oct-2016.) (Proof shortened by Wolf Lammen, 1-Jan-2018.) Remove dependency on ax-10 2145. (Revised by Wolf Lammen, 4-Jul-2021.) (Proof shortened by Wolf Lammen, 11-Oct-2021.)
Hypothesis
Ref Expression
stdpc5.1 𝑥𝜑
Assertion
Ref Expression
stdpc5 (∀𝑥(𝜑𝜓) → (𝜑 → ∀𝑥𝜓))

Proof of Theorem stdpc5
StepHypRef Expression
1 stdpc5.1 . . 3 𝑥𝜑
2119.21 2207 . 2 (∀𝑥(𝜑𝜓) ↔ (𝜑 → ∀𝑥𝜓))
32biimpi 218 1 (∀𝑥(𝜑𝜓) → (𝜑 → ∀𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1535  wnf 1784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-12 2177
This theorem depends on definitions:  df-bi 209  df-ex 1781  df-nf 1785
This theorem is referenced by:  2stdpc5  34154
  Copyright terms: Public domain W3C validator