MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  stoic2b Structured version   Visualization version   GIF version

Theorem stoic2b 1779
Description: Stoic logic Thema 2 version b. See stoic2a 1778. Version b is with the phrase "or both". We already have this rule as mpd3an3 1460, so here we prove the equivalence and discourage its use. (New usage is discouraged.) (Contributed by David A. Wheeler, 17-Feb-2019.)
Hypotheses
Ref Expression
stoic2b.1 ((𝜑𝜓) → 𝜒)
stoic2b.2 ((𝜑𝜓𝜒) → 𝜃)
Assertion
Ref Expression
stoic2b ((𝜑𝜓) → 𝜃)

Proof of Theorem stoic2b
StepHypRef Expression
1 stoic2b.1 . 2 ((𝜑𝜓) → 𝜒)
2 stoic2b.2 . 2 ((𝜑𝜓𝜒) → 𝜃)
31, 2mpd3an3 1460 1 ((𝜑𝜓) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator