![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpd3an3 | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 8-Nov-2007.) |
Ref | Expression |
---|---|
mpd3an3.2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
mpd3an3.3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mpd3an3 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpd3an3.2 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | mpd3an3.3 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
3 | 2 | 3expa 1117 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
4 | 1, 3 | mpdan 687 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: stoic2b 1771 elovmpo 7677 f1oeng 9009 php 9244 nnsdomg 9332 wdomimag 9624 gruuni 10837 genpv 11036 pncan3 11513 mulsubaddmulsub 11724 infssuzle 12970 fzrevral3 13650 flflp1 13843 subsq2 14246 brfi1ind 14544 opfi1ind 14547 ccatws1ls 14667 swrdrlen 14693 pfxpfxid 14743 pfxcctswrd 14744 2cshwid 14848 caubnd 15393 dvdsmul1 16311 dvdsmul2 16312 hashbcval 17035 setsvalg 17199 ressval 17276 restval 17472 mrelatglb0 18618 imasmnd2 18799 efmndov 18906 qusinv 19220 ghminv 19253 gsmsymgrfixlem1 19459 gsmsymgreqlem2 19463 gexod 19618 lsmvalx 19671 rngrz 20183 imasring 20343 irredneg 20446 01eq0ring 20546 ocvin 21709 frlmiscvec 21886 evlrhm 22137 gsumsmonply1 22326 mat1mhm 22505 marrepfval 22581 marrepval0 22582 marepvfval 22586 marepvval0 22587 1elcpmat 22736 m2cpminv0 22782 idpm2idmp 22822 chfacfscmulgsum 22881 chfacfpmmulgsum 22885 restin 23189 qtopval 23718 elqtop3 23726 elfm3 23973 flimval 23986 nmge0 24645 nmeq0 24646 nminv 24649 nmo0 24771 0nghm 24777 coemulhi 26307 isosctrlem2 26876 divsqrtsumlem 27037 2lgsoddprmlem4 27473 0uhgrrusgr 29610 frgruhgr0v 30292 nvge0 30701 nvnd 30716 dip0r 30745 dip0l 30746 nmoo0 30819 hi2eq 31133 wrdsplex 32904 resvval 33332 unitdivcld 33861 signspval 34545 satfv0 35342 ltflcei 37594 elghomlem1OLD 37871 rngorz 37909 rngonegmn1l 37927 rngonegmn1r 37928 igenval 38047 xrnidresex 38388 xrncnvepresex 38389 lfl0 39046 olj01 39206 olm11 39208 hl2at 39387 pmapeq0 39748 trlcl 40146 trlle 40166 tendoid 40755 tendo0plr 40774 tendoipl2 40780 erngmul 40788 erngmul-rN 40796 dvamulr 40994 dvavadd 40997 dvhmulr 41068 cdlemm10N 41100 repncan3 42389 pellfund14 42885 mendmulr 43172 onnog 43418 fmuldfeq 45538 stoweidlem19 45974 stoweidlem26 45981 addsubeq0 47245 zp1modne 47285 prelspr 47410 lincval1 48264 |
Copyright terms: Public domain | W3C validator |