Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpd3an3 | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 8-Nov-2007.) |
Ref | Expression |
---|---|
mpd3an3.2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
mpd3an3.3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mpd3an3 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpd3an3.2 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | mpd3an3.3 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
3 | 2 | 3expa 1117 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
4 | 1, 3 | mpdan 684 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: stoic2b 1778 elovmpo 7523 f1oeng 8768 php 9002 wdomimag 9355 gruuni 10565 genpv 10764 pncan3 11238 mulsubaddmulsub 11448 infssuzle 12680 fzrevral3 13352 flflp1 13536 subsq2 13936 brfi1ind 14222 opfi1ind 14225 ccatws1ls 14352 swrdrlen 14381 pfxpfxid 14431 pfxcctswrd 14432 2cshwid 14536 caubnd 15079 dvdsmul1 15996 dvdsmul2 15997 hashbcval 16712 setsvalg 16876 ressval 16953 restval 17146 mrelatglb0 18288 imasmnd2 18431 efmndov 18529 qusinv 18824 ghminv 18850 gsmsymgrfixlem1 19044 gsmsymgreqlem2 19048 gexod 19200 lsmvalx 19253 ringrz 19836 imasring 19867 irredneg 19961 ocvin 20888 frlmiscvec 21065 evlrhm 21315 gsumsmonply1 21483 mat1mhm 21642 marrepfval 21718 marrepval0 21719 marepvfval 21723 marepvval0 21724 1elcpmat 21873 m2cpminv0 21919 idpm2idmp 21959 chfacfscmulgsum 22018 chfacfpmmulgsum 22022 restin 22326 qtopval 22855 elqtop3 22863 elfm3 23110 flimval 23123 nmge0 23782 nmeq0 23783 nminv 23786 nmo0 23908 0nghm 23914 coemulhi 25424 isosctrlem2 25978 divsqrtsumlem 26138 2lgsoddprmlem4 26572 0uhgrrusgr 27954 frgruhgr0v 28637 nvge0 29044 nvnd 29059 dip0r 29088 dip0l 29089 nmoo0 29162 hi2eq 29476 wrdsplex 31221 resvval 31535 unitdivcld 31860 signspval 32540 satfv0 33329 ltflcei 35774 elghomlem1OLD 36052 rngorz 36090 rngonegmn1l 36108 rngonegmn1r 36109 igenval 36228 xrnidresex 36540 xrncnvepresex 36541 lfl0 37086 olj01 37246 olm11 37248 hl2at 37426 pmapeq0 37787 trlcl 38185 trlle 38205 tendoid 38794 tendo0plr 38813 tendoipl2 38819 erngmul 38827 erngmul-rN 38835 dvamulr 39033 dvavadd 39036 dvhmulr 39107 cdlemm10N 39139 repncan3 40373 pellfund14 40727 mendmulr 41020 fmuldfeq 43131 stoweidlem19 43567 stoweidlem26 43574 addsubeq0 44799 prelspr 44949 lincval1 45771 |
Copyright terms: Public domain | W3C validator |