| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpd3an3 | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 8-Nov-2007.) |
| Ref | Expression |
|---|---|
| mpd3an3.2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| mpd3an3.3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mpd3an3 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpd3an3.2 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | mpd3an3.3 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 3 | 2 | 3expa 1118 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| 4 | 1, 3 | mpdan 687 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: stoic2b 1775 elovmpo 7637 f1oeng 8945 php 9177 nnsdomg 9253 wdomimag 9547 gruuni 10760 genpv 10959 pncan3 11436 mulsubaddmulsub 11649 infssuzle 12897 fzrevral3 13582 flflp1 13776 subsq2 14183 brfi1ind 14481 opfi1ind 14484 ccatws1ls 14605 swrdrlen 14631 pfxpfxid 14681 pfxcctswrd 14682 2cshwid 14786 caubnd 15332 dvdsmul1 16254 dvdsmul2 16255 hashbcval 16980 setsvalg 17143 ressval 17210 restval 17396 mrelatglb0 18527 imasmnd2 18708 efmndov 18815 qusinv 19129 ghminv 19162 gsmsymgrfixlem1 19364 gsmsymgreqlem2 19368 gexod 19523 lsmvalx 19576 rngrz 20082 imasring 20246 irredneg 20346 01eq0ring 20446 ocvin 21590 frlmiscvec 21765 evlrhm 22010 gsumsmonply1 22201 mat1mhm 22378 marrepfval 22454 marrepval0 22455 marepvfval 22459 marepvval0 22460 1elcpmat 22609 m2cpminv0 22655 idpm2idmp 22695 chfacfscmulgsum 22754 chfacfpmmulgsum 22758 restin 23060 qtopval 23589 elqtop3 23597 elfm3 23844 flimval 23857 nmge0 24512 nmeq0 24513 nminv 24516 nmo0 24630 0nghm 24636 coemulhi 26166 isosctrlem2 26736 divsqrtsumlem 26897 2lgsoddprmlem4 27333 0uhgrrusgr 29513 frgruhgr0v 30200 nvge0 30609 nvnd 30624 dip0r 30653 dip0l 30654 nmoo0 30727 hi2eq 31041 wrdsplex 32864 resvval 33308 unitdivcld 33898 signspval 34550 satfv0 35352 ltflcei 37609 elghomlem1OLD 37886 rngorz 37924 rngonegmn1l 37942 rngonegmn1r 37943 igenval 38062 xrnidresex 38400 xrncnvepresex 38401 lfl0 39065 olj01 39225 olm11 39227 hl2at 39406 pmapeq0 39767 trlcl 40165 trlle 40185 tendoid 40774 tendo0plr 40793 tendoipl2 40799 erngmul 40807 erngmul-rN 40815 dvamulr 41013 dvavadd 41016 dvhmulr 41087 cdlemm10N 41119 repncan3 42378 pellfund14 42893 mendmulr 43180 onnog 43425 fmuldfeq 45588 stoweidlem19 46024 stoweidlem26 46031 addsubeq0 47301 zp1modne 47351 modm1nep1 47370 prelspr 47491 lincval1 48412 |
| Copyright terms: Public domain | W3C validator |