| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpd3an3 | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 8-Nov-2007.) |
| Ref | Expression |
|---|---|
| mpd3an3.2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| mpd3an3.3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mpd3an3 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpd3an3.2 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | mpd3an3.3 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 3 | 2 | 3expa 1118 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| 4 | 1, 3 | mpdan 687 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: stoic2b 1775 elovmpo 7650 f1oeng 8983 php 9219 nnsdomg 9305 wdomimag 9599 gruuni 10812 genpv 11011 pncan3 11488 mulsubaddmulsub 11699 infssuzle 12945 fzrevral3 13629 flflp1 13822 subsq2 14227 brfi1ind 14525 opfi1ind 14528 ccatws1ls 14649 swrdrlen 14675 pfxpfxid 14725 pfxcctswrd 14726 2cshwid 14830 caubnd 15375 dvdsmul1 16295 dvdsmul2 16296 hashbcval 17020 setsvalg 17183 ressval 17252 restval 17438 mrelatglb0 18569 imasmnd2 18750 efmndov 18857 qusinv 19171 ghminv 19204 gsmsymgrfixlem1 19406 gsmsymgreqlem2 19410 gexod 19565 lsmvalx 19618 rngrz 20124 imasring 20288 irredneg 20388 01eq0ring 20488 ocvin 21632 frlmiscvec 21807 evlrhm 22052 gsumsmonply1 22243 mat1mhm 22420 marrepfval 22496 marrepval0 22497 marepvfval 22501 marepvval0 22502 1elcpmat 22651 m2cpminv0 22697 idpm2idmp 22737 chfacfscmulgsum 22796 chfacfpmmulgsum 22800 restin 23102 qtopval 23631 elqtop3 23639 elfm3 23886 flimval 23899 nmge0 24554 nmeq0 24555 nminv 24558 nmo0 24672 0nghm 24678 coemulhi 26209 isosctrlem2 26779 divsqrtsumlem 26940 2lgsoddprmlem4 27376 0uhgrrusgr 29504 frgruhgr0v 30191 nvge0 30600 nvnd 30615 dip0r 30644 dip0l 30645 nmoo0 30718 hi2eq 31032 wrdsplex 32857 resvval 33291 unitdivcld 33878 signspval 34530 satfv0 35326 ltflcei 37578 elghomlem1OLD 37855 rngorz 37893 rngonegmn1l 37911 rngonegmn1r 37912 igenval 38031 xrnidresex 38371 xrncnvepresex 38372 lfl0 39029 olj01 39189 olm11 39191 hl2at 39370 pmapeq0 39731 trlcl 40129 trlle 40149 tendoid 40738 tendo0plr 40757 tendoipl2 40763 erngmul 40771 erngmul-rN 40779 dvamulr 40977 dvavadd 40980 dvhmulr 41051 cdlemm10N 41083 repncan3 42373 pellfund14 42868 mendmulr 43155 onnog 43400 fmuldfeq 45560 stoweidlem19 45996 stoweidlem26 46003 addsubeq0 47273 zp1modne 47323 prelspr 47448 lincval1 48343 |
| Copyright terms: Public domain | W3C validator |