| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpd3an3 | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 8-Nov-2007.) |
| Ref | Expression |
|---|---|
| mpd3an3.2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| mpd3an3.3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mpd3an3 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpd3an3.2 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | mpd3an3.3 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 3 | 2 | 3expa 1118 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| 4 | 1, 3 | mpdan 687 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: stoic2b 1776 elovmpo 7597 f1oeng 8899 php 9123 nnsdomg 9190 wdomimag 9480 gruuni 10698 genpv 10897 pncan3 11375 mulsubaddmulsub 11588 infssuzle 12831 fzrevral3 13516 flflp1 13713 subsq2 14120 brfi1ind 14418 opfi1ind 14421 ccatws1ls 14543 swrdrlen 14569 pfxpfxid 14618 pfxcctswrd 14619 2cshwid 14723 caubnd 15268 dvdsmul1 16190 dvdsmul2 16191 hashbcval 16916 setsvalg 17079 ressval 17146 restval 17332 mrelatglb0 18469 imasmnd2 18684 efmndov 18791 qusinv 19104 ghminv 19137 gsmsymgrfixlem1 19341 gsmsymgreqlem2 19345 gexod 19500 lsmvalx 19553 rngrz 20086 imasring 20250 irredneg 20350 01eq0ring 20447 ocvin 21613 frlmiscvec 21788 evlrhm 22032 gsumsmonply1 22223 mat1mhm 22400 marrepfval 22476 marrepval0 22477 marepvfval 22481 marepvval0 22482 1elcpmat 22631 m2cpminv0 22677 idpm2idmp 22717 chfacfscmulgsum 22776 chfacfpmmulgsum 22780 restin 23082 qtopval 23611 elqtop3 23619 elfm3 23866 flimval 23879 nmge0 24533 nmeq0 24534 nminv 24537 nmo0 24651 0nghm 24657 coemulhi 26187 isosctrlem2 26757 divsqrtsumlem 26918 2lgsoddprmlem4 27354 0uhgrrusgr 29559 frgruhgr0v 30246 nvge0 30655 nvnd 30670 dip0r 30699 dip0l 30700 nmoo0 30773 hi2eq 31087 wrdsplex 32924 resvval 33301 unitdivcld 33935 signspval 34586 satfv0 35423 ltflcei 37668 elghomlem1OLD 37945 rngorz 37983 rngonegmn1l 38001 rngonegmn1r 38002 igenval 38121 xrnidresex 38474 xrncnvepresex 38475 lfl0 39184 olj01 39344 olm11 39346 hl2at 39524 pmapeq0 39885 trlcl 40283 trlle 40303 tendoid 40892 tendo0plr 40911 tendoipl2 40917 erngmul 40925 erngmul-rN 40933 dvamulr 41131 dvavadd 41134 dvhmulr 41205 cdlemm10N 41237 repncan3 42501 pellfund14 43015 mendmulr 43301 onnog 43546 fmuldfeq 45707 stoweidlem19 46141 stoweidlem26 46148 addsubeq0 47420 zp1modne 47470 modm1nep1 47489 prelspr 47610 lincval1 48544 |
| Copyright terms: Public domain | W3C validator |