| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpd3an3 | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 8-Nov-2007.) |
| Ref | Expression |
|---|---|
| mpd3an3.2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| mpd3an3.3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mpd3an3 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpd3an3.2 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | mpd3an3.3 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 3 | 2 | 3expa 1118 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| 4 | 1, 3 | mpdan 687 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: stoic2b 1775 elovmpo 7598 f1oeng 8903 php 9131 nnsdomg 9204 wdomimag 9498 gruuni 10713 genpv 10912 pncan3 11389 mulsubaddmulsub 11602 infssuzle 12850 fzrevral3 13535 flflp1 13729 subsq2 14136 brfi1ind 14434 opfi1ind 14437 ccatws1ls 14558 swrdrlen 14584 pfxpfxid 14633 pfxcctswrd 14634 2cshwid 14738 caubnd 15284 dvdsmul1 16206 dvdsmul2 16207 hashbcval 16932 setsvalg 17095 ressval 17162 restval 17348 mrelatglb0 18485 imasmnd2 18666 efmndov 18773 qusinv 19087 ghminv 19120 gsmsymgrfixlem1 19324 gsmsymgreqlem2 19328 gexod 19483 lsmvalx 19536 rngrz 20069 imasring 20233 irredneg 20333 01eq0ring 20433 ocvin 21599 frlmiscvec 21774 evlrhm 22019 gsumsmonply1 22210 mat1mhm 22387 marrepfval 22463 marrepval0 22464 marepvfval 22468 marepvval0 22469 1elcpmat 22618 m2cpminv0 22664 idpm2idmp 22704 chfacfscmulgsum 22763 chfacfpmmulgsum 22767 restin 23069 qtopval 23598 elqtop3 23606 elfm3 23853 flimval 23866 nmge0 24521 nmeq0 24522 nminv 24525 nmo0 24639 0nghm 24645 coemulhi 26175 isosctrlem2 26745 divsqrtsumlem 26906 2lgsoddprmlem4 27342 0uhgrrusgr 29542 frgruhgr0v 30226 nvge0 30635 nvnd 30650 dip0r 30679 dip0l 30680 nmoo0 30753 hi2eq 31067 wrdsplex 32890 resvval 33277 unitdivcld 33867 signspval 34519 satfv0 35330 ltflcei 37587 elghomlem1OLD 37864 rngorz 37902 rngonegmn1l 37920 rngonegmn1r 37921 igenval 38040 xrnidresex 38378 xrncnvepresex 38379 lfl0 39043 olj01 39203 olm11 39205 hl2at 39384 pmapeq0 39745 trlcl 40143 trlle 40163 tendoid 40752 tendo0plr 40771 tendoipl2 40777 erngmul 40785 erngmul-rN 40793 dvamulr 40991 dvavadd 40994 dvhmulr 41065 cdlemm10N 41097 repncan3 42356 pellfund14 42871 mendmulr 43157 onnog 43402 fmuldfeq 45565 stoweidlem19 46001 stoweidlem26 46008 addsubeq0 47281 zp1modne 47331 modm1nep1 47350 prelspr 47471 lincval1 48405 |
| Copyright terms: Public domain | W3C validator |