![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpd3an3 | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 8-Nov-2007.) |
Ref | Expression |
---|---|
mpd3an3.2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
mpd3an3.3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mpd3an3 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpd3an3.2 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | mpd3an3.3 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
3 | 2 | 3expa 1118 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
4 | 1, 3 | mpdan 686 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: stoic2b 1773 elovmpo 7695 f1oeng 9031 php 9273 nnsdomg 9363 wdomimag 9656 gruuni 10869 genpv 11068 pncan3 11544 mulsubaddmulsub 11754 infssuzle 12996 fzrevral3 13671 flflp1 13858 subsq2 14260 brfi1ind 14558 opfi1ind 14561 ccatws1ls 14681 swrdrlen 14707 pfxpfxid 14757 pfxcctswrd 14758 2cshwid 14862 caubnd 15407 dvdsmul1 16326 dvdsmul2 16327 hashbcval 17049 setsvalg 17213 ressval 17290 restval 17486 mrelatglb0 18631 imasmnd2 18809 efmndov 18916 qusinv 19230 ghminv 19263 gsmsymgrfixlem1 19469 gsmsymgreqlem2 19473 gexod 19628 lsmvalx 19681 rngrz 20193 imasring 20353 irredneg 20456 01eq0ring 20556 ocvin 21715 frlmiscvec 21892 evlrhm 22143 gsumsmonply1 22332 mat1mhm 22511 marrepfval 22587 marrepval0 22588 marepvfval 22592 marepvval0 22593 1elcpmat 22742 m2cpminv0 22788 idpm2idmp 22828 chfacfscmulgsum 22887 chfacfpmmulgsum 22891 restin 23195 qtopval 23724 elqtop3 23732 elfm3 23979 flimval 23992 nmge0 24651 nmeq0 24652 nminv 24655 nmo0 24777 0nghm 24783 coemulhi 26313 isosctrlem2 26880 divsqrtsumlem 27041 2lgsoddprmlem4 27477 0uhgrrusgr 29614 frgruhgr0v 30296 nvge0 30705 nvnd 30720 dip0r 30749 dip0l 30750 nmoo0 30823 hi2eq 31137 wrdsplex 32902 resvval 33318 unitdivcld 33847 signspval 34529 satfv0 35326 ltflcei 37568 elghomlem1OLD 37845 rngorz 37883 rngonegmn1l 37901 rngonegmn1r 37902 igenval 38021 xrnidresex 38363 xrncnvepresex 38364 lfl0 39021 olj01 39181 olm11 39183 hl2at 39362 pmapeq0 39723 trlcl 40121 trlle 40141 tendoid 40730 tendo0plr 40749 tendoipl2 40755 erngmul 40763 erngmul-rN 40771 dvamulr 40969 dvavadd 40972 dvhmulr 41043 cdlemm10N 41075 repncan3 42359 pellfund14 42854 mendmulr 43145 onnog 43391 fmuldfeq 45504 stoweidlem19 45940 stoweidlem26 45947 addsubeq0 47211 prelspr 47360 lincval1 48148 |
Copyright terms: Public domain | W3C validator |