| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpd3an3 | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 8-Nov-2007.) |
| Ref | Expression |
|---|---|
| mpd3an3.2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| mpd3an3.3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mpd3an3 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpd3an3.2 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | mpd3an3.3 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 3 | 2 | 3expa 1118 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| 4 | 1, 3 | mpdan 687 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: stoic2b 1775 elovmpo 7634 f1oeng 8942 php 9171 nnsdomg 9246 wdomimag 9540 gruuni 10753 genpv 10952 pncan3 11429 mulsubaddmulsub 11642 infssuzle 12890 fzrevral3 13575 flflp1 13769 subsq2 14176 brfi1ind 14474 opfi1ind 14477 ccatws1ls 14598 swrdrlen 14624 pfxpfxid 14674 pfxcctswrd 14675 2cshwid 14779 caubnd 15325 dvdsmul1 16247 dvdsmul2 16248 hashbcval 16973 setsvalg 17136 ressval 17203 restval 17389 mrelatglb0 18520 imasmnd2 18701 efmndov 18808 qusinv 19122 ghminv 19155 gsmsymgrfixlem1 19357 gsmsymgreqlem2 19361 gexod 19516 lsmvalx 19569 rngrz 20075 imasring 20239 irredneg 20339 01eq0ring 20439 ocvin 21583 frlmiscvec 21758 evlrhm 22003 gsumsmonply1 22194 mat1mhm 22371 marrepfval 22447 marrepval0 22448 marepvfval 22452 marepvval0 22453 1elcpmat 22602 m2cpminv0 22648 idpm2idmp 22688 chfacfscmulgsum 22747 chfacfpmmulgsum 22751 restin 23053 qtopval 23582 elqtop3 23590 elfm3 23837 flimval 23850 nmge0 24505 nmeq0 24506 nminv 24509 nmo0 24623 0nghm 24629 coemulhi 26159 isosctrlem2 26729 divsqrtsumlem 26890 2lgsoddprmlem4 27326 0uhgrrusgr 29506 frgruhgr0v 30193 nvge0 30602 nvnd 30617 dip0r 30646 dip0l 30647 nmoo0 30720 hi2eq 31034 wrdsplex 32857 resvval 33301 unitdivcld 33891 signspval 34543 satfv0 35345 ltflcei 37602 elghomlem1OLD 37879 rngorz 37917 rngonegmn1l 37935 rngonegmn1r 37936 igenval 38055 xrnidresex 38393 xrncnvepresex 38394 lfl0 39058 olj01 39218 olm11 39220 hl2at 39399 pmapeq0 39760 trlcl 40158 trlle 40178 tendoid 40767 tendo0plr 40786 tendoipl2 40792 erngmul 40800 erngmul-rN 40808 dvamulr 41006 dvavadd 41009 dvhmulr 41080 cdlemm10N 41112 repncan3 42371 pellfund14 42886 mendmulr 43173 onnog 43418 fmuldfeq 45581 stoweidlem19 46017 stoweidlem26 46024 addsubeq0 47297 zp1modne 47347 modm1nep1 47366 prelspr 47487 lincval1 48408 |
| Copyright terms: Public domain | W3C validator |