Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpd3an3 | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 8-Nov-2007.) |
Ref | Expression |
---|---|
mpd3an3.2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
mpd3an3.3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mpd3an3 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpd3an3.2 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | mpd3an3.3 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
3 | 2 | 3expa 1116 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
4 | 1, 3 | mpdan 683 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: stoic2b 1779 elovmpo 7492 f1oeng 8714 wdomimag 9276 gruuni 10487 genpv 10686 pncan3 11159 mulsubaddmulsub 11369 infssuzle 12600 fzrevral3 13272 flflp1 13455 subsq2 13855 brfi1ind 14141 opfi1ind 14144 ccatws1ls 14271 swrdrlen 14300 pfxpfxid 14350 pfxcctswrd 14351 2cshwid 14455 caubnd 14998 dvdsmul1 15915 dvdsmul2 15916 hashbcval 16631 setsvalg 16795 ressval 16870 restval 17054 mrelatglb0 18194 imasmnd2 18337 efmndov 18435 qusinv 18730 ghminv 18756 gsmsymgrfixlem1 18950 gsmsymgreqlem2 18954 gexod 19106 lsmvalx 19159 ringrz 19742 imasring 19773 irredneg 19867 ocvin 20791 frlmiscvec 20966 evlrhm 21216 gsumsmonply1 21384 mat1mhm 21541 marrepfval 21617 marrepval0 21618 marepvfval 21622 marepvval0 21623 1elcpmat 21772 m2cpminv0 21818 idpm2idmp 21858 chfacfscmulgsum 21917 chfacfpmmulgsum 21921 restin 22225 qtopval 22754 elqtop3 22762 elfm3 23009 flimval 23022 nmge0 23679 nmeq0 23680 nminv 23683 nmo0 23805 0nghm 23811 coemulhi 25320 isosctrlem2 25874 divsqrtsumlem 26034 2lgsoddprmlem4 26468 0uhgrrusgr 27848 frgruhgr0v 28529 nvge0 28936 nvnd 28951 dip0r 28980 dip0l 28981 nmoo0 29054 hi2eq 29368 wrdsplex 31114 resvval 31428 unitdivcld 31753 signspval 32431 satfv0 33220 ltflcei 35692 elghomlem1OLD 35970 rngorz 36008 rngonegmn1l 36026 rngonegmn1r 36027 igenval 36146 xrnidresex 36460 xrncnvepresex 36461 lfl0 37006 olj01 37166 olm11 37168 hl2at 37346 pmapeq0 37707 trlcl 38105 trlle 38125 tendoid 38714 tendo0plr 38733 tendoipl2 38739 erngmul 38747 erngmul-rN 38755 dvamulr 38953 dvavadd 38956 dvhmulr 39027 cdlemm10N 39059 repncan3 40287 pellfund14 40636 mendmulr 40929 fmuldfeq 43014 stoweidlem19 43450 stoweidlem26 43457 addsubeq0 44676 prelspr 44826 lincval1 45648 |
Copyright terms: Public domain | W3C validator |