| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpd3an3 | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 8-Nov-2007.) |
| Ref | Expression |
|---|---|
| mpd3an3.2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| mpd3an3.3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mpd3an3 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpd3an3.2 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | mpd3an3.3 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 3 | 2 | 3expa 1118 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| 4 | 1, 3 | mpdan 687 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: stoic2b 1776 elovmpo 7591 f1oeng 8893 php 9116 nnsdomg 9183 wdomimag 9473 gruuni 10688 genpv 10887 pncan3 11365 mulsubaddmulsub 11578 infssuzle 12826 fzrevral3 13511 flflp1 13708 subsq2 14115 brfi1ind 14413 opfi1ind 14416 ccatws1ls 14538 swrdrlen 14564 pfxpfxid 14613 pfxcctswrd 14614 2cshwid 14718 caubnd 15263 dvdsmul1 16185 dvdsmul2 16186 hashbcval 16911 setsvalg 17074 ressval 17141 restval 17327 mrelatglb0 18464 imasmnd2 18679 efmndov 18786 qusinv 19100 ghminv 19133 gsmsymgrfixlem1 19337 gsmsymgreqlem2 19341 gexod 19496 lsmvalx 19549 rngrz 20082 imasring 20246 irredneg 20346 01eq0ring 20443 ocvin 21609 frlmiscvec 21784 evlrhm 22029 gsumsmonply1 22220 mat1mhm 22397 marrepfval 22473 marrepval0 22474 marepvfval 22478 marepvval0 22479 1elcpmat 22628 m2cpminv0 22674 idpm2idmp 22714 chfacfscmulgsum 22773 chfacfpmmulgsum 22777 restin 23079 qtopval 23608 elqtop3 23616 elfm3 23863 flimval 23876 nmge0 24530 nmeq0 24531 nminv 24534 nmo0 24648 0nghm 24654 coemulhi 26184 isosctrlem2 26754 divsqrtsumlem 26915 2lgsoddprmlem4 27351 0uhgrrusgr 29555 frgruhgr0v 30239 nvge0 30648 nvnd 30663 dip0r 30692 dip0l 30693 nmoo0 30766 hi2eq 31080 wrdsplex 32912 resvval 33289 unitdivcld 33909 signspval 34560 satfv0 35390 ltflcei 37647 elghomlem1OLD 37924 rngorz 37962 rngonegmn1l 37980 rngonegmn1r 37981 igenval 38100 xrnidresex 38438 xrncnvepresex 38439 lfl0 39103 olj01 39263 olm11 39265 hl2at 39443 pmapeq0 39804 trlcl 40202 trlle 40222 tendoid 40811 tendo0plr 40830 tendoipl2 40836 erngmul 40844 erngmul-rN 40852 dvamulr 41050 dvavadd 41053 dvhmulr 41124 cdlemm10N 41156 repncan3 42415 pellfund14 42930 mendmulr 43216 onnog 43461 fmuldfeq 45622 stoweidlem19 46056 stoweidlem26 46063 addsubeq0 47326 zp1modne 47376 modm1nep1 47395 prelspr 47516 lincval1 48450 |
| Copyright terms: Public domain | W3C validator |