| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > stoic3 | Structured version Visualization version GIF version | ||
| Description: Stoic logic Thema 3. Statement T3 of [Bobzien] p. 116-117 discusses Stoic logic Thema 3. "When from two (assemblies) a third follows, and from the one that follows (i.e., the third) together with another, external assumption, another follows, then that other follows from the first two and the externally co-assumed one. (Simp. Cael. 237.2-4)" (Contributed by David A. Wheeler, 17-Feb-2019.) |
| Ref | Expression |
|---|---|
| stoic3.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| stoic3.2 | ⊢ ((𝜒 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| stoic3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stoic3.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | stoic3.2 | . . 3 ⊢ ((𝜒 ∧ 𝜃) → 𝜏) | |
| 3 | 1, 2 | sylan 580 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜏) |
| 4 | 3 | 3impa 1109 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: opelopabt 5492 ordelinel 6435 nelrnfvne 7049 omass 8544 nnmass 8588 f1imaeng 8985 ssfi 9137 genpass 10962 adddir 11165 le2tri3i 11304 addsub12 11434 subdir 11612 ltaddsub 11652 leaddsub 11654 div12 11859 xmulass 13247 fldiv2 13823 modsubdir 13905 digit2 14201 muldivbinom2 14228 ccatass 14553 ccatw2s1cl 14589 repswcshw 14777 s3tpop 14875 absdiflt 15284 absdifle 15285 binomrisefac 16008 cos01gt0 16159 rpnnen2lem4 16185 rpnnen2lem7 16188 sadass 16441 lubub 18470 lubl 18471 symggrplem 18811 reslmhm2b 20961 cncrng 21300 ipcl 21542 ma1repveval 22458 mp2pm2mplem5 22697 opnneiss 23005 llyi 23361 nllyi 23362 cfiluweak 24182 cniccibl 25742 cnicciblnc 25744 ply1term 26109 explog 26503 logrec 26673 usgredgop 29097 usgr2v1e2w 29179 cusgrsizeinds 29380 clwwlknonex2 30038 4cycl2vnunb 30219 frrusgrord0lem 30268 frrusgrord0 30269 numclwwlk7 30320 lnocoi 30686 hvaddsubass 30970 hvmulcan2 31002 hhssabloilem 31190 hhssnv 31193 homco1 31730 homulass 31731 hoadddir 31733 hoaddsubass 31744 hosubsub4 31747 kbmul 31884 lnopmulsubi 31905 mdsl3 32245 cdj3lem2 32364 probmeasb 34421 signswmnd 34548 bnj563 34733 revpfxsfxrev 35103 lfuhgr2 35106 fnessex 36334 incsequz2 37743 ltrncnvatb 40132 jm2.17a 42949 lnrfgtr 43109 bdaybndex 43420 limsupvaluz2 45736 prsssprel 47489 dignnld 48592 |
| Copyright terms: Public domain | W3C validator |