![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > stoic3 | Structured version Visualization version GIF version |
Description: Stoic logic Thema 3. Statement T3 of [Bobzien] p. 116-117 discusses Stoic logic Thema 3. "When from two (assemblies) a third follows, and from the one that follows (i.e., the third) together with another, external assumption, another follows, then that other follows from the first two and the externally co-assumed one. (Simp. Cael. 237.2-4)" (Contributed by David A. Wheeler, 17-Feb-2019.) |
Ref | Expression |
---|---|
stoic3.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
stoic3.2 | ⊢ ((𝜒 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
stoic3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stoic3.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | stoic3.2 | . . 3 ⊢ ((𝜒 ∧ 𝜃) → 𝜏) | |
3 | 1, 2 | sylan 580 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜏) |
4 | 3 | 3impa 1109 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: opelopabt 5541 ordelinel 6486 nelrnfvne 7096 omass 8616 nnmass 8660 f1imaeng 9052 ssfi 9211 genpass 11046 adddir 11249 le2tri3i 11388 addsub12 11518 subdir 11694 ltaddsub 11734 leaddsub 11736 div12 11941 xmulass 13325 fldiv2 13897 modsubdir 13977 digit2 14271 muldivbinom2 14298 ccatass 14622 ccatw2s1cl 14658 repswcshw 14846 s3tpop 14944 absdiflt 15352 absdifle 15353 binomrisefac 16074 cos01gt0 16223 rpnnen2lem4 16249 rpnnen2lem7 16252 sadass 16504 lubub 18568 lubl 18569 symggrplem 18909 reslmhm2b 21070 cncrng 21418 ipcl 21668 ma1repveval 22592 mp2pm2mplem5 22831 opnneiss 23141 llyi 23497 nllyi 23498 cfiluweak 24319 cniccibl 25890 cnicciblnc 25892 ply1term 26257 explog 26650 logrec 26820 usgredgop 29201 usgr2v1e2w 29283 cusgrsizeinds 29484 clwwlknonex2 30137 4cycl2vnunb 30318 frrusgrord0lem 30367 frrusgrord0 30368 numclwwlk7 30419 lnocoi 30785 hvaddsubass 31069 hvmulcan2 31101 hhssabloilem 31289 hhssnv 31292 homco1 31829 homulass 31830 hoadddir 31832 hoaddsubass 31843 hosubsub4 31846 kbmul 31983 lnopmulsubi 32004 mdsl3 32344 cdj3lem2 32463 probmeasb 34411 signswmnd 34550 bnj563 34735 revpfxsfxrev 35099 lfuhgr2 35102 fnessex 36328 incsequz2 37735 ltrncnvatb 40120 jm2.17a 42948 lnrfgtr 43108 bdaybndex 43420 limsupvaluz2 45693 prsssprel 47412 dignnld 48452 |
Copyright terms: Public domain | W3C validator |