| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > stoic3 | Structured version Visualization version GIF version | ||
| Description: Stoic logic Thema 3. Statement T3 of [Bobzien] p. 116-117 discusses Stoic logic Thema 3. "When from two (assemblies) a third follows, and from the one that follows (i.e., the third) together with another, external assumption, another follows, then that other follows from the first two and the externally co-assumed one. (Simp. Cael. 237.2-4)" (Contributed by David A. Wheeler, 17-Feb-2019.) |
| Ref | Expression |
|---|---|
| stoic3.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| stoic3.2 | ⊢ ((𝜒 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| stoic3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stoic3.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | stoic3.2 | . . 3 ⊢ ((𝜒 ∧ 𝜃) → 𝜏) | |
| 3 | 1, 2 | sylan 580 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜏) |
| 4 | 3 | 3impa 1109 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: opelopabt 5507 ordelinel 6454 nelrnfvne 7066 omass 8590 nnmass 8634 f1imaeng 9026 ssfi 9185 genpass 11021 adddir 11224 le2tri3i 11363 addsub12 11493 subdir 11669 ltaddsub 11709 leaddsub 11711 div12 11916 xmulass 13301 fldiv2 13876 modsubdir 13956 digit2 14252 muldivbinom2 14279 ccatass 14604 ccatw2s1cl 14640 repswcshw 14828 s3tpop 14926 absdiflt 15334 absdifle 15335 binomrisefac 16056 cos01gt0 16207 rpnnen2lem4 16233 rpnnen2lem7 16236 sadass 16488 lubub 18519 lubl 18520 symggrplem 18860 reslmhm2b 21010 cncrng 21349 ipcl 21591 ma1repveval 22507 mp2pm2mplem5 22746 opnneiss 23054 llyi 23410 nllyi 23411 cfiluweak 24231 cniccibl 25792 cnicciblnc 25794 ply1term 26159 explog 26553 logrec 26723 usgredgop 29095 usgr2v1e2w 29177 cusgrsizeinds 29378 clwwlknonex2 30036 4cycl2vnunb 30217 frrusgrord0lem 30266 frrusgrord0 30267 numclwwlk7 30318 lnocoi 30684 hvaddsubass 30968 hvmulcan2 31000 hhssabloilem 31188 hhssnv 31191 homco1 31728 homulass 31729 hoadddir 31731 hoaddsubass 31742 hosubsub4 31745 kbmul 31882 lnopmulsubi 31903 mdsl3 32243 cdj3lem2 32362 probmeasb 34408 signswmnd 34535 bnj563 34720 revpfxsfxrev 35084 lfuhgr2 35087 fnessex 36310 incsequz2 37719 ltrncnvatb 40103 jm2.17a 42931 lnrfgtr 43091 bdaybndex 43402 limsupvaluz2 45715 prsssprel 47450 dignnld 48531 |
| Copyright terms: Public domain | W3C validator |