| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > stoic3 | Structured version Visualization version GIF version | ||
| Description: Stoic logic Thema 3. Statement T3 of [Bobzien] p. 116-117 discusses Stoic logic Thema 3. "When from two (assemblies) a third follows, and from the one that follows (i.e., the third) together with another, external assumption, another follows, then that other follows from the first two and the externally co-assumed one. (Simp. Cael. 237.2-4)" (Contributed by David A. Wheeler, 17-Feb-2019.) |
| Ref | Expression |
|---|---|
| stoic3.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| stoic3.2 | ⊢ ((𝜒 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| stoic3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stoic3.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | stoic3.2 | . . 3 ⊢ ((𝜒 ∧ 𝜃) → 𝜏) | |
| 3 | 1, 2 | sylan 580 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜏) |
| 4 | 3 | 3impa 1109 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: opelopabt 5470 ordelinel 6409 nelrnfvne 7010 omass 8495 nnmass 8539 f1imaeng 8936 ssfi 9082 genpass 10900 adddir 11103 le2tri3i 11243 addsub12 11373 subdir 11551 ltaddsub 11591 leaddsub 11593 div12 11798 xmulass 13186 fldiv2 13765 modsubdir 13847 digit2 14143 muldivbinom2 14170 ccatass 14496 ccatw2s1cl 14532 repswcshw 14719 s3tpop 14816 absdiflt 15225 absdifle 15226 binomrisefac 15949 cos01gt0 16100 rpnnen2lem4 16126 rpnnen2lem7 16129 sadass 16382 lubub 18417 lubl 18418 symggrplem 18792 reslmhm2b 20988 cncrng 21325 ipcl 21570 ma1repveval 22486 mp2pm2mplem5 22725 opnneiss 23033 llyi 23389 nllyi 23390 cfiluweak 24209 cniccibl 25769 cnicciblnc 25771 ply1term 26136 explog 26530 logrec 26700 usgredgop 29148 usgr2v1e2w 29230 cusgrsizeinds 29431 clwwlknonex2 30089 4cycl2vnunb 30270 frrusgrord0lem 30319 frrusgrord0 30320 numclwwlk7 30371 lnocoi 30737 hvaddsubass 31021 hvmulcan2 31053 hhssabloilem 31241 hhssnv 31244 homco1 31781 homulass 31782 hoadddir 31784 hoaddsubass 31795 hosubsub4 31798 kbmul 31935 lnopmulsubi 31956 mdsl3 32296 cdj3lem2 32415 probmeasb 34443 signswmnd 34570 bnj563 34755 fineqvnttrclselem2 35142 fineqvnttrclselem3 35143 revpfxsfxrev 35160 lfuhgr2 35163 fnessex 36390 incsequz2 37788 ltrncnvatb 40236 jm2.17a 43052 lnrfgtr 43212 bdaybndex 43523 limsupvaluz2 45835 prsssprel 47587 dignnld 48703 |
| Copyright terms: Public domain | W3C validator |