![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > stoic3 | Structured version Visualization version GIF version |
Description: Stoic logic Thema 3. Statement T3 of [Bobzien] p. 116-117 discusses Stoic logic Thema 3. "When from two (assemblies) a third follows, and from the one that follows (i.e., the third) together with another, external assumption, another follows, then that other follows from the first two and the externally co-assumed one. (Simp. Cael. 237.2-4)" (Contributed by David A. Wheeler, 17-Feb-2019.) |
Ref | Expression |
---|---|
stoic3.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
stoic3.2 | ⊢ ((𝜒 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
stoic3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stoic3.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | stoic3.2 | . . 3 ⊢ ((𝜒 ∧ 𝜃) → 𝜏) | |
3 | 1, 2 | sylan 579 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜏) |
4 | 3 | 3impa 1110 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: opelopabt 5551 ordelinel 6496 nelrnfvne 7111 omass 8636 nnmass 8680 f1imaeng 9074 ssfi 9240 genpass 11078 adddir 11281 le2tri3i 11420 addsub12 11549 subdir 11724 ltaddsub 11764 leaddsub 11766 div12 11971 xmulass 13349 fldiv2 13912 modsubdir 13991 digit2 14285 muldivbinom2 14312 ccatass 14636 ccatw2s1cl 14672 repswcshw 14860 s3tpop 14958 absdiflt 15366 absdifle 15367 binomrisefac 16090 cos01gt0 16239 rpnnen2lem4 16265 rpnnen2lem7 16268 sadass 16517 lubub 18581 lubl 18582 symggrplem 18919 reslmhm2b 21076 cncrng 21424 ipcl 21674 ma1repveval 22598 mp2pm2mplem5 22837 opnneiss 23147 llyi 23503 nllyi 23504 cfiluweak 24325 cniccibl 25896 cnicciblnc 25898 ply1term 26263 explog 26654 logrec 26824 usgredgop 29205 usgr2v1e2w 29287 cusgrsizeinds 29488 clwwlknonex2 30141 4cycl2vnunb 30322 frrusgrord0lem 30371 frrusgrord0 30372 numclwwlk7 30423 lnocoi 30789 hvaddsubass 31073 hvmulcan2 31105 hhssabloilem 31293 hhssnv 31296 homco1 31833 homulass 31834 hoadddir 31836 hoaddsubass 31847 hosubsub4 31850 kbmul 31987 lnopmulsubi 32008 mdsl3 32348 cdj3lem2 32467 probmeasb 34395 signswmnd 34534 bnj563 34719 revpfxsfxrev 35083 lfuhgr2 35086 fnessex 36312 incsequz2 37709 ltrncnvatb 40095 jm2.17a 42917 lnrfgtr 43077 bdaybndex 43393 prsssprel 47362 dignnld 48337 |
Copyright terms: Public domain | W3C validator |