![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > stoic3 | Structured version Visualization version GIF version |
Description: Stoic logic Thema 3. Statement T3 of [Bobzien] p. 116-117 discusses Stoic logic Thema 3. "When from two (assemblies) a third follows, and from the one that follows (i.e., the third) together with another, external assumption, another follows, then other follows from the first two and the externally co-assumed one. (Simp. Cael. 237.2-4)" (Contributed by David A. Wheeler, 17-Feb-2019.) |
Ref | Expression |
---|---|
stoic3.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
stoic3.2 | ⊢ ((𝜒 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
stoic3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stoic3.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | stoic3.2 | . . 3 ⊢ ((𝜒 ∧ 𝜃) → 𝜏) | |
3 | 1, 2 | sylan 576 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜏) |
4 | 3 | 3impa 1137 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∧ w3a 1108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 386 df-3an 1110 |
This theorem is referenced by: opelopabt 5183 ordelinel 6039 nelrnfvne 6579 omass 7900 nnmass 7944 f1imaeng 8255 genpass 10119 adddir 10319 le2tri3i 10457 addsub12 10586 subdir 10756 ltaddsub 10794 leaddsub 10796 div12 10999 xmulass 12366 fldiv2 12915 modsubdir 12994 digit2 13251 muldivbinom2 13303 ccatass 13608 ccatw2s1cl 13646 ccatw2s1lenOLD 13648 repswcshw 13897 s3tpop 13994 absdiflt 14398 absdifle 14399 binomrisefac 15109 cos01gt0 15257 rpnnen2lem4 15282 rpnnen2lem7 15285 sadass 15528 lubub 17434 lubl 17435 reslmhm2b 19375 ipcl 20302 ma1repveval 20703 mp2pm2mplem5 20943 opnneiss 21251 llyi 21606 nllyi 21607 cfiluweak 22427 cniccibl 23948 ply1term 24301 explog 24681 logrec 24845 usgredgop 26406 usgr2v1e2w 26486 cusgrsizeinds 26702 clwwlknonex2 27449 4cycl2vnunb 27639 frrusgrord0lem 27688 frrusgrord0 27689 numclwwlk7 27776 lnocoi 28137 hvaddsubass 28423 hvmulcan2 28455 hhssabloilem 28643 hhssnv 28646 homco1 29185 homulass 29186 hoadddir 29188 hoaddsubass 29199 hosubsub4 29202 kbmul 29339 lnopmulsubi 29360 mdsl3 29700 cdj3lem2 29819 probmeasb 31009 signswmnd 31152 bnj563 31330 fnessex 32853 cnicciblnc 33969 incsequz2 34032 ltrncnvatb 36159 jm2.17a 38308 lnrfgtr 38471 prsssprel 42533 dignnld 43192 |
Copyright terms: Public domain | W3C validator |