Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > stoic3 | Structured version Visualization version GIF version |
Description: Stoic logic Thema 3. Statement T3 of [Bobzien] p. 116-117 discusses Stoic logic Thema 3. "When from two (assemblies) a third follows, and from the one that follows (i.e., the third) together with another, external assumption, another follows, then that other follows from the first two and the externally co-assumed one. (Simp. Cael. 237.2-4)" (Contributed by David A. Wheeler, 17-Feb-2019.) |
Ref | Expression |
---|---|
stoic3.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
stoic3.2 | ⊢ ((𝜒 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
stoic3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stoic3.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | stoic3.2 | . . 3 ⊢ ((𝜒 ∧ 𝜃) → 𝜏) | |
3 | 1, 2 | sylan 580 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜏) |
4 | 3 | 3impa 1109 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: opelopabt 5445 ordelinel 6364 nelrnfvne 6955 omass 8411 nnmass 8455 f1imaeng 8800 ssfi 8956 genpass 10765 adddir 10966 le2tri3i 11105 addsub12 11234 subdir 11409 ltaddsub 11449 leaddsub 11451 div12 11655 xmulass 13021 fldiv2 13581 modsubdir 13660 digit2 13951 muldivbinom2 13977 ccatass 14293 ccatw2s1cl 14330 repswcshw 14525 s3tpop 14622 absdiflt 15029 absdifle 15030 binomrisefac 15752 cos01gt0 15900 rpnnen2lem4 15926 rpnnen2lem7 15929 sadass 16178 lubub 18229 lubl 18230 symggrplem 18523 reslmhm2b 20316 ipcl 20838 ma1repveval 21720 mp2pm2mplem5 21959 opnneiss 22269 llyi 22625 nllyi 22626 cfiluweak 23447 cniccibl 25005 cnicciblnc 25007 ply1term 25365 explog 25749 logrec 25913 usgredgop 27540 usgr2v1e2w 27619 cusgrsizeinds 27819 clwwlknonex2 28473 4cycl2vnunb 28654 frrusgrord0lem 28703 frrusgrord0 28704 numclwwlk7 28755 lnocoi 29119 hvaddsubass 29403 hvmulcan2 29435 hhssabloilem 29623 hhssnv 29626 homco1 30163 homulass 30164 hoadddir 30166 hoaddsubass 30177 hosubsub4 30180 kbmul 30317 lnopmulsubi 30338 mdsl3 30678 cdj3lem2 30797 probmeasb 32397 signswmnd 32536 bnj563 32723 revpfxsfxrev 33077 lfuhgr2 33080 fnessex 34535 incsequz2 35907 ltrncnvatb 38152 jm2.17a 40782 lnrfgtr 40945 prsssprel 44940 dignnld 45949 |
Copyright terms: Public domain | W3C validator |