| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > stoic3 | Structured version Visualization version GIF version | ||
| Description: Stoic logic Thema 3. Statement T3 of [Bobzien] p. 116-117 discusses Stoic logic Thema 3. "When from two (assemblies) a third follows, and from the one that follows (i.e., the third) together with another, external assumption, another follows, then that other follows from the first two and the externally co-assumed one. (Simp. Cael. 237.2-4)" (Contributed by David A. Wheeler, 17-Feb-2019.) |
| Ref | Expression |
|---|---|
| stoic3.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| stoic3.2 | ⊢ ((𝜒 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| stoic3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stoic3.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | stoic3.2 | . . 3 ⊢ ((𝜒 ∧ 𝜃) → 𝜏) | |
| 3 | 1, 2 | sylan 580 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜏) |
| 4 | 3 | 3impa 1109 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: opelopabt 5487 ordelinel 6423 nelrnfvne 7031 omass 8521 nnmass 8565 f1imaeng 8962 ssfi 9114 genpass 10938 adddir 11141 le2tri3i 11280 addsub12 11410 subdir 11588 ltaddsub 11628 leaddsub 11630 div12 11835 xmulass 13223 fldiv2 13799 modsubdir 13881 digit2 14177 muldivbinom2 14204 ccatass 14529 ccatw2s1cl 14565 repswcshw 14753 s3tpop 14851 absdiflt 15260 absdifle 15261 binomrisefac 15984 cos01gt0 16135 rpnnen2lem4 16161 rpnnen2lem7 16164 sadass 16417 lubub 18452 lubl 18453 symggrplem 18793 reslmhm2b 20993 cncrng 21330 ipcl 21575 ma1repveval 22491 mp2pm2mplem5 22730 opnneiss 23038 llyi 23394 nllyi 23395 cfiluweak 24215 cniccibl 25775 cnicciblnc 25777 ply1term 26142 explog 26536 logrec 26706 usgredgop 29150 usgr2v1e2w 29232 cusgrsizeinds 29433 clwwlknonex2 30088 4cycl2vnunb 30269 frrusgrord0lem 30318 frrusgrord0 30319 numclwwlk7 30370 lnocoi 30736 hvaddsubass 31020 hvmulcan2 31052 hhssabloilem 31240 hhssnv 31243 homco1 31780 homulass 31781 hoadddir 31783 hoaddsubass 31794 hosubsub4 31797 kbmul 31934 lnopmulsubi 31955 mdsl3 32295 cdj3lem2 32414 probmeasb 34414 signswmnd 34541 bnj563 34726 revpfxsfxrev 35096 lfuhgr2 35099 fnessex 36327 incsequz2 37736 ltrncnvatb 40125 jm2.17a 42942 lnrfgtr 43102 bdaybndex 43413 limsupvaluz2 45729 prsssprel 47482 dignnld 48585 |
| Copyright terms: Public domain | W3C validator |