| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > stoic3 | Structured version Visualization version GIF version | ||
| Description: Stoic logic Thema 3. Statement T3 of [Bobzien] p. 116-117 discusses Stoic logic Thema 3. "When from two (assemblies) a third follows, and from the one that follows (i.e., the third) together with another, external assumption, another follows, then that other follows from the first two and the externally co-assumed one. (Simp. Cael. 237.2-4)" (Contributed by David A. Wheeler, 17-Feb-2019.) |
| Ref | Expression |
|---|---|
| stoic3.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| stoic3.2 | ⊢ ((𝜒 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| stoic3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stoic3.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | stoic3.2 | . . 3 ⊢ ((𝜒 ∧ 𝜃) → 𝜏) | |
| 3 | 1, 2 | sylan 580 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜏) |
| 4 | 3 | 3impa 1109 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: opelopabt 5495 ordelinel 6438 nelrnfvne 7052 omass 8547 nnmass 8591 f1imaeng 8988 ssfi 9143 genpass 10969 adddir 11172 le2tri3i 11311 addsub12 11441 subdir 11619 ltaddsub 11659 leaddsub 11661 div12 11866 xmulass 13254 fldiv2 13830 modsubdir 13912 digit2 14208 muldivbinom2 14235 ccatass 14560 ccatw2s1cl 14596 repswcshw 14784 s3tpop 14882 absdiflt 15291 absdifle 15292 binomrisefac 16015 cos01gt0 16166 rpnnen2lem4 16192 rpnnen2lem7 16195 sadass 16448 lubub 18477 lubl 18478 symggrplem 18818 reslmhm2b 20968 cncrng 21307 ipcl 21549 ma1repveval 22465 mp2pm2mplem5 22704 opnneiss 23012 llyi 23368 nllyi 23369 cfiluweak 24189 cniccibl 25749 cnicciblnc 25751 ply1term 26116 explog 26510 logrec 26680 usgredgop 29104 usgr2v1e2w 29186 cusgrsizeinds 29387 clwwlknonex2 30045 4cycl2vnunb 30226 frrusgrord0lem 30275 frrusgrord0 30276 numclwwlk7 30327 lnocoi 30693 hvaddsubass 30977 hvmulcan2 31009 hhssabloilem 31197 hhssnv 31200 homco1 31737 homulass 31738 hoadddir 31740 hoaddsubass 31751 hosubsub4 31754 kbmul 31891 lnopmulsubi 31912 mdsl3 32252 cdj3lem2 32371 probmeasb 34428 signswmnd 34555 bnj563 34740 revpfxsfxrev 35110 lfuhgr2 35113 fnessex 36341 incsequz2 37750 ltrncnvatb 40139 jm2.17a 42956 lnrfgtr 43116 bdaybndex 43427 limsupvaluz2 45743 prsssprel 47493 dignnld 48596 |
| Copyright terms: Public domain | W3C validator |