| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > stoic3 | Structured version Visualization version GIF version | ||
| Description: Stoic logic Thema 3. Statement T3 of [Bobzien] p. 116-117 discusses Stoic logic Thema 3. "When from two (assemblies) a third follows, and from the one that follows (i.e., the third) together with another, external assumption, another follows, then that other follows from the first two and the externally co-assumed one. (Simp. Cael. 237.2-4)" (Contributed by David A. Wheeler, 17-Feb-2019.) |
| Ref | Expression |
|---|---|
| stoic3.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| stoic3.2 | ⊢ ((𝜒 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| stoic3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | stoic3.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | stoic3.2 | . . 3 ⊢ ((𝜒 ∧ 𝜃) → 𝜏) | |
| 3 | 1, 2 | sylan 580 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜏) |
| 4 | 3 | 3impa 1109 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: opelopabt 5475 ordelinel 6410 nelrnfvne 7011 omass 8498 nnmass 8542 f1imaeng 8939 ssfi 9087 genpass 10903 adddir 11106 le2tri3i 11246 addsub12 11376 subdir 11554 ltaddsub 11594 leaddsub 11596 div12 11801 xmulass 13189 fldiv2 13765 modsubdir 13847 digit2 14143 muldivbinom2 14170 ccatass 14495 ccatw2s1cl 14531 repswcshw 14718 s3tpop 14816 absdiflt 15225 absdifle 15226 binomrisefac 15949 cos01gt0 16100 rpnnen2lem4 16126 rpnnen2lem7 16129 sadass 16382 lubub 18417 lubl 18418 symggrplem 18758 reslmhm2b 20958 cncrng 21295 ipcl 21540 ma1repveval 22456 mp2pm2mplem5 22695 opnneiss 23003 llyi 23359 nllyi 23360 cfiluweak 24180 cniccibl 25740 cnicciblnc 25742 ply1term 26107 explog 26501 logrec 26671 usgredgop 29119 usgr2v1e2w 29201 cusgrsizeinds 29402 clwwlknonex2 30057 4cycl2vnunb 30238 frrusgrord0lem 30287 frrusgrord0 30288 numclwwlk7 30339 lnocoi 30705 hvaddsubass 30989 hvmulcan2 31021 hhssabloilem 31209 hhssnv 31212 homco1 31749 homulass 31750 hoadddir 31752 hoaddsubass 31763 hosubsub4 31766 kbmul 31903 lnopmulsubi 31924 mdsl3 32264 cdj3lem2 32383 probmeasb 34414 signswmnd 34541 bnj563 34726 fineqvnttrclselem2 35091 fineqvnttrclselem3 35092 revpfxsfxrev 35109 lfuhgr2 35112 fnessex 36340 incsequz2 37749 ltrncnvatb 40137 jm2.17a 42953 lnrfgtr 43113 bdaybndex 43424 limsupvaluz2 45739 prsssprel 47492 dignnld 48608 |
| Copyright terms: Public domain | W3C validator |