![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > stoic3 | Structured version Visualization version GIF version |
Description: Stoic logic Thema 3. Statement T3 of [Bobzien] p. 116-117 discusses Stoic logic Thema 3. "When from two (assemblies) a third follows, and from the one that follows (i.e., the third) together with another, external assumption, another follows, then that other follows from the first two and the externally co-assumed one. (Simp. Cael. 237.2-4)" (Contributed by David A. Wheeler, 17-Feb-2019.) |
Ref | Expression |
---|---|
stoic3.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
stoic3.2 | ⊢ ((𝜒 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
stoic3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stoic3.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | stoic3.2 | . . 3 ⊢ ((𝜒 ∧ 𝜃) → 𝜏) | |
3 | 1, 2 | sylan 579 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜏) |
4 | 3 | 3impa 1107 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1086 |
This theorem is referenced by: opelopabt 5522 ordelinel 6455 nelrnfvne 7069 omass 8575 nnmass 8619 f1imaeng 9006 ssfi 9169 genpass 11000 adddir 11202 le2tri3i 11341 addsub12 11470 subdir 11645 ltaddsub 11685 leaddsub 11687 div12 11891 xmulass 13263 fldiv2 13823 modsubdir 13902 digit2 14196 muldivbinom2 14220 ccatass 14535 ccatw2s1cl 14571 repswcshw 14759 s3tpop 14857 absdiflt 15261 absdifle 15262 binomrisefac 15983 cos01gt0 16131 rpnnen2lem4 16157 rpnnen2lem7 16160 sadass 16409 lubub 18466 lubl 18467 symggrplem 18799 reslmhm2b 20892 ipcl 21494 ma1repveval 22395 mp2pm2mplem5 22634 opnneiss 22944 llyi 23300 nllyi 23301 cfiluweak 24122 cniccibl 25692 cnicciblnc 25694 ply1term 26058 explog 26444 logrec 26611 usgredgop 28899 usgr2v1e2w 28978 cusgrsizeinds 29178 clwwlknonex2 29831 4cycl2vnunb 30012 frrusgrord0lem 30061 frrusgrord0 30062 numclwwlk7 30113 lnocoi 30479 hvaddsubass 30763 hvmulcan2 30795 hhssabloilem 30983 hhssnv 30986 homco1 31523 homulass 31524 hoadddir 31526 hoaddsubass 31537 hosubsub4 31540 kbmul 31677 lnopmulsubi 31698 mdsl3 32038 cdj3lem2 32157 probmeasb 33918 signswmnd 34057 bnj563 34243 revpfxsfxrev 34595 lfuhgr2 34598 fnessex 35721 incsequz2 37107 ltrncnvatb 39499 jm2.17a 42188 lnrfgtr 42351 bdaybndex 42671 prsssprel 46641 dignnld 47477 |
Copyright terms: Public domain | W3C validator |