![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > stoic3 | Structured version Visualization version GIF version |
Description: Stoic logic Thema 3. Statement T3 of [Bobzien] p. 116-117 discusses Stoic logic Thema 3. "When from two (assemblies) a third follows, and from the one that follows (i.e., the third) together with another, external assumption, another follows, then that other follows from the first two and the externally co-assumed one. (Simp. Cael. 237.2-4)" (Contributed by David A. Wheeler, 17-Feb-2019.) |
Ref | Expression |
---|---|
stoic3.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
stoic3.2 | ⊢ ((𝜒 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
stoic3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stoic3.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | stoic3.2 | . . 3 ⊢ ((𝜒 ∧ 𝜃) → 𝜏) | |
3 | 1, 2 | sylan 580 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜏) |
4 | 3 | 3impa 1110 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1089 |
This theorem is referenced by: opelopabt 5532 ordelinel 6465 nelrnfvne 7079 omass 8582 nnmass 8626 f1imaeng 9012 ssfi 9175 genpass 11006 adddir 11209 le2tri3i 11348 addsub12 11477 subdir 11652 ltaddsub 11692 leaddsub 11694 div12 11898 xmulass 13270 fldiv2 13830 modsubdir 13909 digit2 14203 muldivbinom2 14227 ccatass 14542 ccatw2s1cl 14578 repswcshw 14766 s3tpop 14864 absdiflt 15268 absdifle 15269 binomrisefac 15990 cos01gt0 16138 rpnnen2lem4 16164 rpnnen2lem7 16167 sadass 16416 lubub 18468 lubl 18469 symggrplem 18801 reslmhm2b 20809 ipcl 21405 ma1repveval 22293 mp2pm2mplem5 22532 opnneiss 22842 llyi 23198 nllyi 23199 cfiluweak 24020 cniccibl 25582 cnicciblnc 25584 ply1term 25942 explog 26326 logrec 26492 usgredgop 28685 usgr2v1e2w 28764 cusgrsizeinds 28964 clwwlknonex2 29617 4cycl2vnunb 29798 frrusgrord0lem 29847 frrusgrord0 29848 numclwwlk7 29899 lnocoi 30265 hvaddsubass 30549 hvmulcan2 30581 hhssabloilem 30769 hhssnv 30772 homco1 31309 homulass 31310 hoadddir 31312 hoaddsubass 31323 hosubsub4 31326 kbmul 31463 lnopmulsubi 31484 mdsl3 31824 cdj3lem2 31943 probmeasb 33715 signswmnd 33854 bnj563 34040 revpfxsfxrev 34392 lfuhgr2 34395 fnessex 35534 incsequz2 36920 ltrncnvatb 39312 jm2.17a 42001 lnrfgtr 42164 bdaybndex 42484 prsssprel 46455 dignnld 47377 |
Copyright terms: Public domain | W3C validator |