Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > stoic3 | Structured version Visualization version GIF version |
Description: Stoic logic Thema 3. Statement T3 of [Bobzien] p. 116-117 discusses Stoic logic Thema 3. "When from two (assemblies) a third follows, and from the one that follows (i.e., the third) together with another, external assumption, another follows, then that other follows from the first two and the externally co-assumed one. (Simp. Cael. 237.2-4)" (Contributed by David A. Wheeler, 17-Feb-2019.) |
Ref | Expression |
---|---|
stoic3.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
stoic3.2 | ⊢ ((𝜒 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
stoic3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | stoic3.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | stoic3.2 | . . 3 ⊢ ((𝜒 ∧ 𝜃) → 𝜏) | |
3 | 1, 2 | sylan 579 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜏) |
4 | 3 | 3impa 1108 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: opelopabt 5438 ordelinel 6349 nelrnfvne 6937 omass 8373 nnmass 8417 f1imaeng 8755 ssfi 8918 domtrfi 8938 genpass 10696 adddir 10897 le2tri3i 11035 addsub12 11164 subdir 11339 ltaddsub 11379 leaddsub 11381 div12 11585 xmulass 12950 fldiv2 13509 modsubdir 13588 digit2 13879 muldivbinom2 13905 ccatass 14221 ccatw2s1cl 14258 repswcshw 14453 s3tpop 14550 absdiflt 14957 absdifle 14958 binomrisefac 15680 cos01gt0 15828 rpnnen2lem4 15854 rpnnen2lem7 15857 sadass 16106 lubub 18144 lubl 18145 symggrplem 18438 reslmhm2b 20231 ipcl 20750 ma1repveval 21628 mp2pm2mplem5 21867 opnneiss 22177 llyi 22533 nllyi 22534 cfiluweak 23355 cniccibl 24910 cnicciblnc 24912 ply1term 25270 explog 25654 logrec 25818 usgredgop 27443 usgr2v1e2w 27522 cusgrsizeinds 27722 clwwlknonex2 28374 4cycl2vnunb 28555 frrusgrord0lem 28604 frrusgrord0 28605 numclwwlk7 28656 lnocoi 29020 hvaddsubass 29304 hvmulcan2 29336 hhssabloilem 29524 hhssnv 29527 homco1 30064 homulass 30065 hoadddir 30067 hoaddsubass 30078 hosubsub4 30081 kbmul 30218 lnopmulsubi 30239 mdsl3 30579 cdj3lem2 30698 probmeasb 32297 signswmnd 32436 bnj563 32623 revpfxsfxrev 32977 lfuhgr2 32980 fnessex 34462 incsequz2 35834 ltrncnvatb 38079 jm2.17a 40698 lnrfgtr 40861 prsssprel 44828 dignnld 45837 |
Copyright terms: Public domain | W3C validator |