MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  stoic4a Structured version   Visualization version   GIF version

Theorem stoic4a 1780
Description: Stoic logic Thema 4 version a. Statement T4 of [Bobzien] p. 117 shows a reconstructed version of Stoic logic Thema 4: "When from two assertibles a third follows, and from the third and one (or both) of the two and one (or more) external assertible(s) another follows, then this other follows from the first two and the external(s)."

We use 𝜃 to represent the "external" assertibles. This is version a, which is without the phrase "or both"; see stoic4b 1781 for the version with the phrase "or both". (Contributed by David A. Wheeler, 17-Feb-2019.)

Hypotheses
Ref Expression
stoic4a.1 ((𝜑𝜓) → 𝜒)
stoic4a.2 ((𝜒𝜑𝜃) → 𝜏)
Assertion
Ref Expression
stoic4a ((𝜑𝜓𝜃) → 𝜏)

Proof of Theorem stoic4a
StepHypRef Expression
1 stoic4a.1 . . 3 ((𝜑𝜓) → 𝜒)
213adant3 1131 . 2 ((𝜑𝜓𝜃) → 𝜒)
3 simp1 1135 . 2 ((𝜑𝜓𝜃) → 𝜑)
4 simp3 1137 . 2 ((𝜑𝜓𝜃) → 𝜃)
5 stoic4a.2 . 2 ((𝜒𝜑𝜃) → 𝜏)
62, 3, 4, 5syl3anc 1370 1 ((𝜑𝜓𝜃) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088
This theorem is referenced by:  pnpcan  11260  relogbexp  25930  repnpcan  40375
  Copyright terms: Public domain W3C validator