|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > syl3anbr | Structured version Visualization version GIF version | ||
| Description: A triple syllogism inference. (Contributed by NM, 29-Dec-2011.) | 
| Ref | Expression | 
|---|---|
| syl3anbr.1 | ⊢ (𝜓 ↔ 𝜑) | 
| syl3anbr.2 | ⊢ (𝜃 ↔ 𝜒) | 
| syl3anbr.3 | ⊢ (𝜂 ↔ 𝜏) | 
| syl3anbr.4 | ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) → 𝜁) | 
| Ref | Expression | 
|---|---|
| syl3anbr | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜁) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | syl3anbr.1 | . . 3 ⊢ (𝜓 ↔ 𝜑) | |
| 2 | 1 | bicomi 224 | . 2 ⊢ (𝜑 ↔ 𝜓) | 
| 3 | syl3anbr.2 | . . 3 ⊢ (𝜃 ↔ 𝜒) | |
| 4 | 3 | bicomi 224 | . 2 ⊢ (𝜒 ↔ 𝜃) | 
| 5 | syl3anbr.3 | . . 3 ⊢ (𝜂 ↔ 𝜏) | |
| 6 | 5 | bicomi 224 | . 2 ⊢ (𝜏 ↔ 𝜂) | 
| 7 | syl3anbr.4 | . 2 ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) → 𝜁) | |
| 8 | 2, 4, 6, 7 | syl3anb 1162 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜁) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1087 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 | 
| This theorem is referenced by: colinearxfr 36076 paddval 39800 | 
| Copyright terms: Public domain | W3C validator |