| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl3anb | Structured version Visualization version GIF version | ||
| Description: A triple syllogism inference. (Contributed by NM, 15-Oct-2005.) |
| Ref | Expression |
|---|---|
| syl3anb.1 | ⊢ (𝜑 ↔ 𝜓) |
| syl3anb.2 | ⊢ (𝜒 ↔ 𝜃) |
| syl3anb.3 | ⊢ (𝜏 ↔ 𝜂) |
| syl3anb.4 | ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) → 𝜁) |
| Ref | Expression |
|---|---|
| syl3anb | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anb.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | syl3anb.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
| 3 | syl3anb.3 | . . 3 ⊢ (𝜏 ↔ 𝜂) | |
| 4 | 1, 2, 3 | 3anbi123i 1155 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) ↔ (𝜓 ∧ 𝜃 ∧ 𝜂)) |
| 5 | syl3anb.4 | . 2 ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) → 𝜁) | |
| 6 | 4, 5 | sylbi 217 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: syl3anbr 1162 poxp 8067 infempty 9404 symgsssg 19387 symgfisg 19388 lmodvscl 20820 xrs1mnd 21386 iscnp2 23174 clwwlknccat 30064 slmdvscl 33224 cgr3permute3 36163 cgr3permute1 36164 cgr3permute2 36165 cgr3permute4 36166 cgr3permute5 36167 colinearxfr 36191 grposnOLD 37995 rngunsnply 43326 |
| Copyright terms: Public domain | W3C validator |