| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl3anb | Structured version Visualization version GIF version | ||
| Description: A triple syllogism inference. (Contributed by NM, 15-Oct-2005.) |
| Ref | Expression |
|---|---|
| syl3anb.1 | ⊢ (𝜑 ↔ 𝜓) |
| syl3anb.2 | ⊢ (𝜒 ↔ 𝜃) |
| syl3anb.3 | ⊢ (𝜏 ↔ 𝜂) |
| syl3anb.4 | ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) → 𝜁) |
| Ref | Expression |
|---|---|
| syl3anb | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anb.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | syl3anb.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
| 3 | syl3anb.3 | . . 3 ⊢ (𝜏 ↔ 𝜂) | |
| 4 | 1, 2, 3 | 3anbi123i 1155 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) ↔ (𝜓 ∧ 𝜃 ∧ 𝜂)) |
| 5 | syl3anb.4 | . 2 ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) → 𝜁) | |
| 6 | 4, 5 | sylbi 217 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: syl3anbr 1162 poxp 8132 infempty 9526 symgsssg 19453 symgfisg 19454 lmodvscl 20840 xrs1mnd 21377 iscnp2 23182 clwwlknccat 30049 slmdvscl 33216 cgr3permute3 36070 cgr3permute1 36071 cgr3permute2 36072 cgr3permute4 36073 cgr3permute5 36074 colinearxfr 36098 grposnOLD 37911 rngunsnply 43160 |
| Copyright terms: Public domain | W3C validator |