MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl3anb Structured version   Visualization version   GIF version

Theorem syl3anb 1161
Description: A triple syllogism inference. (Contributed by NM, 15-Oct-2005.)
Hypotheses
Ref Expression
syl3anb.1 (𝜑𝜓)
syl3anb.2 (𝜒𝜃)
syl3anb.3 (𝜏𝜂)
syl3anb.4 ((𝜓𝜃𝜂) → 𝜁)
Assertion
Ref Expression
syl3anb ((𝜑𝜒𝜏) → 𝜁)

Proof of Theorem syl3anb
StepHypRef Expression
1 syl3anb.1 . . 3 (𝜑𝜓)
2 syl3anb.2 . . 3 (𝜒𝜃)
3 syl3anb.3 . . 3 (𝜏𝜂)
41, 2, 33anbi123i 1155 . 2 ((𝜑𝜒𝜏) ↔ (𝜓𝜃𝜂))
5 syl3anb.4 . 2 ((𝜓𝜃𝜂) → 𝜁)
64, 5sylbi 217 1 ((𝜑𝜒𝜏) → 𝜁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089
This theorem is referenced by:  syl3anbr  1162  poxp  8169  infempty  9576  symgsssg  19509  symgfisg  19510  lmodvscl  20898  xrs1mnd  21445  iscnp2  23268  clwwlknccat  30095  slmdvscl  33193  cgr3permute3  36011  cgr3permute1  36012  cgr3permute2  36013  cgr3permute4  36014  cgr3permute5  36015  colinearxfr  36039  grposnOLD  37842  rngunsnply  43130
  Copyright terms: Public domain W3C validator