Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl3anb | Structured version Visualization version GIF version |
Description: A triple syllogism inference. (Contributed by NM, 15-Oct-2005.) |
Ref | Expression |
---|---|
syl3anb.1 | ⊢ (𝜑 ↔ 𝜓) |
syl3anb.2 | ⊢ (𝜒 ↔ 𝜃) |
syl3anb.3 | ⊢ (𝜏 ↔ 𝜂) |
syl3anb.4 | ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) → 𝜁) |
Ref | Expression |
---|---|
syl3anb | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3anb.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | syl3anb.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
3 | syl3anb.3 | . . 3 ⊢ (𝜏 ↔ 𝜂) | |
4 | 1, 2, 3 | 3anbi123i 1153 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) ↔ (𝜓 ∧ 𝜃 ∧ 𝜂)) |
5 | syl3anb.4 | . 2 ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) → 𝜁) | |
6 | 4, 5 | sylbi 216 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: syl3anbr 1160 poxp 7940 infempty 9196 symgsssg 18990 symgfisg 18991 lmodvscl 20055 xrs1mnd 20548 iscnp2 22298 clwwlknccat 28328 slmdvscl 31369 cgr3permute3 34276 cgr3permute1 34277 cgr3permute2 34278 cgr3permute4 34279 cgr3permute5 34280 colinearxfr 34304 grposnOLD 35967 rngunsnply 40914 |
Copyright terms: Public domain | W3C validator |