![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl3anb | Structured version Visualization version GIF version |
Description: A triple syllogism inference. (Contributed by NM, 15-Oct-2005.) |
Ref | Expression |
---|---|
syl3anb.1 | ⊢ (𝜑 ↔ 𝜓) |
syl3anb.2 | ⊢ (𝜒 ↔ 𝜃) |
syl3anb.3 | ⊢ (𝜏 ↔ 𝜂) |
syl3anb.4 | ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) → 𝜁) |
Ref | Expression |
---|---|
syl3anb | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3anb.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | syl3anb.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
3 | syl3anb.3 | . . 3 ⊢ (𝜏 ↔ 𝜂) | |
4 | 1, 2, 3 | 3anbi123i 1155 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) ↔ (𝜓 ∧ 𝜃 ∧ 𝜂)) |
5 | syl3anb.4 | . 2 ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) → 𝜁) | |
6 | 4, 5 | sylbi 217 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: syl3anbr 1162 poxp 8169 infempty 9576 symgsssg 19509 symgfisg 19510 lmodvscl 20898 xrs1mnd 21445 iscnp2 23268 clwwlknccat 30095 slmdvscl 33193 cgr3permute3 36011 cgr3permute1 36012 cgr3permute2 36013 cgr3permute4 36014 cgr3permute5 36015 colinearxfr 36039 grposnOLD 37842 rngunsnply 43130 |
Copyright terms: Public domain | W3C validator |