| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl3anb | Structured version Visualization version GIF version | ||
| Description: A triple syllogism inference. (Contributed by NM, 15-Oct-2005.) |
| Ref | Expression |
|---|---|
| syl3anb.1 | ⊢ (𝜑 ↔ 𝜓) |
| syl3anb.2 | ⊢ (𝜒 ↔ 𝜃) |
| syl3anb.3 | ⊢ (𝜏 ↔ 𝜂) |
| syl3anb.4 | ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) → 𝜁) |
| Ref | Expression |
|---|---|
| syl3anb | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anb.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | syl3anb.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
| 3 | syl3anb.3 | . . 3 ⊢ (𝜏 ↔ 𝜂) | |
| 4 | 1, 2, 3 | 3anbi123i 1155 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) ↔ (𝜓 ∧ 𝜃 ∧ 𝜂)) |
| 5 | syl3anb.4 | . 2 ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) → 𝜁) | |
| 6 | 4, 5 | sylbi 217 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: syl3anbr 1162 poxp 8110 infempty 9467 symgsssg 19404 symgfisg 19405 lmodvscl 20791 xrs1mnd 21328 iscnp2 23133 clwwlknccat 29999 slmdvscl 33174 cgr3permute3 36042 cgr3permute1 36043 cgr3permute2 36044 cgr3permute4 36045 cgr3permute5 36046 colinearxfr 36070 grposnOLD 37883 rngunsnply 43165 |
| Copyright terms: Public domain | W3C validator |