| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl3anb | Structured version Visualization version GIF version | ||
| Description: A triple syllogism inference. (Contributed by NM, 15-Oct-2005.) |
| Ref | Expression |
|---|---|
| syl3anb.1 | ⊢ (𝜑 ↔ 𝜓) |
| syl3anb.2 | ⊢ (𝜒 ↔ 𝜃) |
| syl3anb.3 | ⊢ (𝜏 ↔ 𝜂) |
| syl3anb.4 | ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) → 𝜁) |
| Ref | Expression |
|---|---|
| syl3anb | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anb.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | syl3anb.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
| 3 | syl3anb.3 | . . 3 ⊢ (𝜏 ↔ 𝜂) | |
| 4 | 1, 2, 3 | 3anbi123i 1155 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) ↔ (𝜓 ∧ 𝜃 ∧ 𝜂)) |
| 5 | syl3anb.4 | . 2 ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) → 𝜁) | |
| 6 | 4, 5 | sylbi 217 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: syl3anbr 1162 poxp 8107 infempty 9460 symgsssg 19397 symgfisg 19398 lmodvscl 20784 xrs1mnd 21321 iscnp2 23126 clwwlknccat 29992 slmdvscl 33167 cgr3permute3 36035 cgr3permute1 36036 cgr3permute2 36037 cgr3permute4 36038 cgr3permute5 36039 colinearxfr 36063 grposnOLD 37876 rngunsnply 43158 |
| Copyright terms: Public domain | W3C validator |