Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl3anb | Structured version Visualization version GIF version |
Description: A triple syllogism inference. (Contributed by NM, 15-Oct-2005.) |
Ref | Expression |
---|---|
syl3anb.1 | ⊢ (𝜑 ↔ 𝜓) |
syl3anb.2 | ⊢ (𝜒 ↔ 𝜃) |
syl3anb.3 | ⊢ (𝜏 ↔ 𝜂) |
syl3anb.4 | ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) → 𝜁) |
Ref | Expression |
---|---|
syl3anb | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3anb.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | syl3anb.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
3 | syl3anb.3 | . . 3 ⊢ (𝜏 ↔ 𝜂) | |
4 | 1, 2, 3 | 3anbi123i 1157 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) ↔ (𝜓 ∧ 𝜃 ∧ 𝜂)) |
5 | syl3anb.4 | . 2 ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) → 𝜁) | |
6 | 4, 5 | sylbi 220 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ w3a 1089 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-3an 1091 |
This theorem is referenced by: syl3anbr 1164 poxp 7895 infempty 9123 symgsssg 18859 symgfisg 18860 lmodvscl 19916 xrs1mnd 20401 iscnp2 22136 clwwlknccat 28146 slmdvscl 31186 cgr3permute3 34086 cgr3permute1 34087 cgr3permute2 34088 cgr3permute4 34089 cgr3permute5 34090 colinearxfr 34114 grposnOLD 35777 rngunsnply 40701 |
Copyright terms: Public domain | W3C validator |