| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl3anb | Structured version Visualization version GIF version | ||
| Description: A triple syllogism inference. (Contributed by NM, 15-Oct-2005.) |
| Ref | Expression |
|---|---|
| syl3anb.1 | ⊢ (𝜑 ↔ 𝜓) |
| syl3anb.2 | ⊢ (𝜒 ↔ 𝜃) |
| syl3anb.3 | ⊢ (𝜏 ↔ 𝜂) |
| syl3anb.4 | ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) → 𝜁) |
| Ref | Expression |
|---|---|
| syl3anb | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anb.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | syl3anb.2 | . . 3 ⊢ (𝜒 ↔ 𝜃) | |
| 3 | syl3anb.3 | . . 3 ⊢ (𝜏 ↔ 𝜂) | |
| 4 | 1, 2, 3 | 3anbi123i 1155 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) ↔ (𝜓 ∧ 𝜃 ∧ 𝜂)) |
| 5 | syl3anb.4 | . 2 ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) → 𝜁) | |
| 6 | 4, 5 | sylbi 217 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: syl3anbr 1162 poxp 8135 infempty 9529 symgsssg 19454 symgfisg 19455 lmodvscl 20845 xrs1mnd 21385 iscnp2 23194 clwwlknccat 30011 slmdvscl 33164 cgr3permute3 36023 cgr3permute1 36024 cgr3permute2 36025 cgr3permute4 36026 cgr3permute5 36027 colinearxfr 36051 grposnOLD 37864 rngunsnply 43159 |
| Copyright terms: Public domain | W3C validator |