Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddval Structured version   Visualization version   GIF version

Theorem paddval 36478
Description: Projective subspace sum operation value. (Contributed by NM, 29-Dec-2011.)
Hypotheses
Ref Expression
paddfval.l = (le‘𝐾)
paddfval.j = (join‘𝐾)
paddfval.a 𝐴 = (Atoms‘𝐾)
paddfval.p + = (+𝑃𝐾)
Assertion
Ref Expression
paddval ((𝐾𝐵𝑋𝐴𝑌𝐴) → (𝑋 + 𝑌) = ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)}))
Distinct variable groups:   𝐴,𝑝   𝑞,𝑝,𝑟,𝐾   𝑋,𝑝,𝑞   𝑌,𝑝,𝑞,𝑟
Allowed substitution hints:   𝐴(𝑟,𝑞)   𝐵(𝑟,𝑞,𝑝)   + (𝑟,𝑞,𝑝)   (𝑟,𝑞,𝑝)   (𝑟,𝑞,𝑝)   𝑋(𝑟)

Proof of Theorem paddval
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 biid 262 . 2 (𝐾𝐵𝐾𝐵)
2 paddfval.a . . . 4 𝐴 = (Atoms‘𝐾)
32fvexi 6555 . . 3 𝐴 ∈ V
43elpw2 5142 . 2 (𝑋 ∈ 𝒫 𝐴𝑋𝐴)
53elpw2 5142 . 2 (𝑌 ∈ 𝒫 𝐴𝑌𝐴)
6 paddfval.l . . . . . 6 = (le‘𝐾)
7 paddfval.j . . . . . 6 = (join‘𝐾)
8 paddfval.p . . . . . 6 + = (+𝑃𝐾)
96, 7, 2, 8paddfval 36477 . . . . 5 (𝐾𝐵+ = (𝑚 ∈ 𝒫 𝐴, 𝑛 ∈ 𝒫 𝐴 ↦ ((𝑚𝑛) ∪ {𝑝𝐴 ∣ ∃𝑞𝑚𝑟𝑛 𝑝 (𝑞 𝑟)})))
109oveqd 7036 . . . 4 (𝐾𝐵 → (𝑋 + 𝑌) = (𝑋(𝑚 ∈ 𝒫 𝐴, 𝑛 ∈ 𝒫 𝐴 ↦ ((𝑚𝑛) ∪ {𝑝𝐴 ∣ ∃𝑞𝑚𝑟𝑛 𝑝 (𝑞 𝑟)}))𝑌))
11103ad2ant1 1126 . . 3 ((𝐾𝐵𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴) → (𝑋 + 𝑌) = (𝑋(𝑚 ∈ 𝒫 𝐴, 𝑛 ∈ 𝒫 𝐴 ↦ ((𝑚𝑛) ∪ {𝑝𝐴 ∣ ∃𝑞𝑚𝑟𝑛 𝑝 (𝑞 𝑟)}))𝑌))
12 simpl 483 . . . . . 6 ((𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴) → 𝑋 ∈ 𝒫 𝐴)
13 simpr 485 . . . . . 6 ((𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴) → 𝑌 ∈ 𝒫 𝐴)
14 unexg 7332 . . . . . . 7 ((𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴) → (𝑋𝑌) ∈ V)
153rabex 5129 . . . . . . 7 {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)} ∈ V
16 unexg 7332 . . . . . . 7 (((𝑋𝑌) ∈ V ∧ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)} ∈ V) → ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)}) ∈ V)
1714, 15, 16sylancl 586 . . . . . 6 ((𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴) → ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)}) ∈ V)
1812, 13, 173jca 1121 . . . . 5 ((𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴) → (𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴 ∧ ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)}) ∈ V))
19183adant1 1123 . . . 4 ((𝐾𝐵𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴) → (𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴 ∧ ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)}) ∈ V))
20 uneq1 4055 . . . . . 6 (𝑚 = 𝑋 → (𝑚𝑛) = (𝑋𝑛))
21 rexeq 3365 . . . . . . 7 (𝑚 = 𝑋 → (∃𝑞𝑚𝑟𝑛 𝑝 (𝑞 𝑟) ↔ ∃𝑞𝑋𝑟𝑛 𝑝 (𝑞 𝑟)))
2221rabbidv 3424 . . . . . 6 (𝑚 = 𝑋 → {𝑝𝐴 ∣ ∃𝑞𝑚𝑟𝑛 𝑝 (𝑞 𝑟)} = {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑛 𝑝 (𝑞 𝑟)})
2320, 22uneq12d 4063 . . . . 5 (𝑚 = 𝑋 → ((𝑚𝑛) ∪ {𝑝𝐴 ∣ ∃𝑞𝑚𝑟𝑛 𝑝 (𝑞 𝑟)}) = ((𝑋𝑛) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑛 𝑝 (𝑞 𝑟)}))
24 uneq2 4056 . . . . . 6 (𝑛 = 𝑌 → (𝑋𝑛) = (𝑋𝑌))
25 rexeq 3365 . . . . . . . 8 (𝑛 = 𝑌 → (∃𝑟𝑛 𝑝 (𝑞 𝑟) ↔ ∃𝑟𝑌 𝑝 (𝑞 𝑟)))
2625rexbidv 3259 . . . . . . 7 (𝑛 = 𝑌 → (∃𝑞𝑋𝑟𝑛 𝑝 (𝑞 𝑟) ↔ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)))
2726rabbidv 3424 . . . . . 6 (𝑛 = 𝑌 → {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑛 𝑝 (𝑞 𝑟)} = {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)})
2824, 27uneq12d 4063 . . . . 5 (𝑛 = 𝑌 → ((𝑋𝑛) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑛 𝑝 (𝑞 𝑟)}) = ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)}))
29 eqid 2794 . . . . 5 (𝑚 ∈ 𝒫 𝐴, 𝑛 ∈ 𝒫 𝐴 ↦ ((𝑚𝑛) ∪ {𝑝𝐴 ∣ ∃𝑞𝑚𝑟𝑛 𝑝 (𝑞 𝑟)})) = (𝑚 ∈ 𝒫 𝐴, 𝑛 ∈ 𝒫 𝐴 ↦ ((𝑚𝑛) ∪ {𝑝𝐴 ∣ ∃𝑞𝑚𝑟𝑛 𝑝 (𝑞 𝑟)}))
3023, 28, 29ovmpog 7168 . . . 4 ((𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴 ∧ ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)}) ∈ V) → (𝑋(𝑚 ∈ 𝒫 𝐴, 𝑛 ∈ 𝒫 𝐴 ↦ ((𝑚𝑛) ∪ {𝑝𝐴 ∣ ∃𝑞𝑚𝑟𝑛 𝑝 (𝑞 𝑟)}))𝑌) = ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)}))
3119, 30syl 17 . . 3 ((𝐾𝐵𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴) → (𝑋(𝑚 ∈ 𝒫 𝐴, 𝑛 ∈ 𝒫 𝐴 ↦ ((𝑚𝑛) ∪ {𝑝𝐴 ∣ ∃𝑞𝑚𝑟𝑛 𝑝 (𝑞 𝑟)}))𝑌) = ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)}))
3211, 31eqtrd 2830 . 2 ((𝐾𝐵𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴) → (𝑋 + 𝑌) = ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)}))
331, 4, 5, 32syl3anbr 1155 1 ((𝐾𝐵𝑋𝐴𝑌𝐴) → (𝑋 + 𝑌) = ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1080   = wceq 1522  wcel 2080  wrex 3105  {crab 3108  Vcvv 3436  cun 3859  wss 3861  𝒫 cpw 4455   class class class wbr 4964  cfv 6228  (class class class)co 7019  cmpo 7021  lecple 16401  joincjn 17383  Atomscatm 35943  +𝑃cpadd 36475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1778  ax-4 1792  ax-5 1889  ax-6 1948  ax-7 1993  ax-8 2082  ax-9 2090  ax-10 2111  ax-11 2125  ax-12 2140  ax-13 2343  ax-ext 2768  ax-rep 5084  ax-sep 5097  ax-nul 5104  ax-pow 5160  ax-pr 5224  ax-un 7322
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-ex 1763  df-nf 1767  df-sb 2042  df-mo 2575  df-eu 2611  df-clab 2775  df-cleq 2787  df-clel 2862  df-nfc 2934  df-ne 2984  df-ral 3109  df-rex 3110  df-reu 3111  df-rab 3113  df-v 3438  df-sbc 3708  df-csb 3814  df-dif 3864  df-un 3866  df-in 3868  df-ss 3876  df-nul 4214  df-if 4384  df-pw 4457  df-sn 4475  df-pr 4477  df-op 4481  df-uni 4748  df-iun 4829  df-br 4965  df-opab 5027  df-mpt 5044  df-id 5351  df-xp 5452  df-rel 5453  df-cnv 5454  df-co 5455  df-dm 5456  df-rn 5457  df-res 5458  df-ima 5459  df-iota 6192  df-fun 6230  df-fn 6231  df-f 6232  df-f1 6233  df-fo 6234  df-f1o 6235  df-fv 6236  df-ov 7022  df-oprab 7023  df-mpo 7024  df-1st 7548  df-2nd 7549  df-padd 36476
This theorem is referenced by:  elpadd  36479  paddunssN  36488  paddcom  36493  paddssat  36494  sspadd1  36495  sspadd2  36496
  Copyright terms: Public domain W3C validator