Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddval Structured version   Visualization version   GIF version

Theorem paddval 38261
Description: Projective subspace sum operation value. (Contributed by NM, 29-Dec-2011.)
Hypotheses
Ref Expression
paddfval.l = (le‘𝐾)
paddfval.j = (join‘𝐾)
paddfval.a 𝐴 = (Atoms‘𝐾)
paddfval.p + = (+𝑃𝐾)
Assertion
Ref Expression
paddval ((𝐾𝐵𝑋𝐴𝑌𝐴) → (𝑋 + 𝑌) = ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)}))
Distinct variable groups:   𝐴,𝑝   𝑞,𝑝,𝑟,𝐾   𝑋,𝑝,𝑞   𝑌,𝑝,𝑞,𝑟
Allowed substitution hints:   𝐴(𝑟,𝑞)   𝐵(𝑟,𝑞,𝑝)   + (𝑟,𝑞,𝑝)   (𝑟,𝑞,𝑝)   (𝑟,𝑞,𝑝)   𝑋(𝑟)

Proof of Theorem paddval
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 biid 260 . 2 (𝐾𝐵𝐾𝐵)
2 paddfval.a . . . 4 𝐴 = (Atoms‘𝐾)
32fvexi 6856 . . 3 𝐴 ∈ V
43elpw2 5302 . 2 (𝑋 ∈ 𝒫 𝐴𝑋𝐴)
53elpw2 5302 . 2 (𝑌 ∈ 𝒫 𝐴𝑌𝐴)
6 paddfval.l . . . . . 6 = (le‘𝐾)
7 paddfval.j . . . . . 6 = (join‘𝐾)
8 paddfval.p . . . . . 6 + = (+𝑃𝐾)
96, 7, 2, 8paddfval 38260 . . . . 5 (𝐾𝐵+ = (𝑚 ∈ 𝒫 𝐴, 𝑛 ∈ 𝒫 𝐴 ↦ ((𝑚𝑛) ∪ {𝑝𝐴 ∣ ∃𝑞𝑚𝑟𝑛 𝑝 (𝑞 𝑟)})))
109oveqd 7374 . . . 4 (𝐾𝐵 → (𝑋 + 𝑌) = (𝑋(𝑚 ∈ 𝒫 𝐴, 𝑛 ∈ 𝒫 𝐴 ↦ ((𝑚𝑛) ∪ {𝑝𝐴 ∣ ∃𝑞𝑚𝑟𝑛 𝑝 (𝑞 𝑟)}))𝑌))
11103ad2ant1 1133 . . 3 ((𝐾𝐵𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴) → (𝑋 + 𝑌) = (𝑋(𝑚 ∈ 𝒫 𝐴, 𝑛 ∈ 𝒫 𝐴 ↦ ((𝑚𝑛) ∪ {𝑝𝐴 ∣ ∃𝑞𝑚𝑟𝑛 𝑝 (𝑞 𝑟)}))𝑌))
12 simpl 483 . . . . . 6 ((𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴) → 𝑋 ∈ 𝒫 𝐴)
13 simpr 485 . . . . . 6 ((𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴) → 𝑌 ∈ 𝒫 𝐴)
14 unexg 7683 . . . . . . 7 ((𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴) → (𝑋𝑌) ∈ V)
153rabex 5289 . . . . . . 7 {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)} ∈ V
16 unexg 7683 . . . . . . 7 (((𝑋𝑌) ∈ V ∧ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)} ∈ V) → ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)}) ∈ V)
1714, 15, 16sylancl 586 . . . . . 6 ((𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴) → ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)}) ∈ V)
1812, 13, 173jca 1128 . . . . 5 ((𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴) → (𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴 ∧ ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)}) ∈ V))
19183adant1 1130 . . . 4 ((𝐾𝐵𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴) → (𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴 ∧ ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)}) ∈ V))
20 uneq1 4116 . . . . . 6 (𝑚 = 𝑋 → (𝑚𝑛) = (𝑋𝑛))
21 rexeq 3310 . . . . . . 7 (𝑚 = 𝑋 → (∃𝑞𝑚𝑟𝑛 𝑝 (𝑞 𝑟) ↔ ∃𝑞𝑋𝑟𝑛 𝑝 (𝑞 𝑟)))
2221rabbidv 3415 . . . . . 6 (𝑚 = 𝑋 → {𝑝𝐴 ∣ ∃𝑞𝑚𝑟𝑛 𝑝 (𝑞 𝑟)} = {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑛 𝑝 (𝑞 𝑟)})
2320, 22uneq12d 4124 . . . . 5 (𝑚 = 𝑋 → ((𝑚𝑛) ∪ {𝑝𝐴 ∣ ∃𝑞𝑚𝑟𝑛 𝑝 (𝑞 𝑟)}) = ((𝑋𝑛) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑛 𝑝 (𝑞 𝑟)}))
24 uneq2 4117 . . . . . 6 (𝑛 = 𝑌 → (𝑋𝑛) = (𝑋𝑌))
25 rexeq 3310 . . . . . . . 8 (𝑛 = 𝑌 → (∃𝑟𝑛 𝑝 (𝑞 𝑟) ↔ ∃𝑟𝑌 𝑝 (𝑞 𝑟)))
2625rexbidv 3175 . . . . . . 7 (𝑛 = 𝑌 → (∃𝑞𝑋𝑟𝑛 𝑝 (𝑞 𝑟) ↔ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)))
2726rabbidv 3415 . . . . . 6 (𝑛 = 𝑌 → {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑛 𝑝 (𝑞 𝑟)} = {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)})
2824, 27uneq12d 4124 . . . . 5 (𝑛 = 𝑌 → ((𝑋𝑛) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑛 𝑝 (𝑞 𝑟)}) = ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)}))
29 eqid 2736 . . . . 5 (𝑚 ∈ 𝒫 𝐴, 𝑛 ∈ 𝒫 𝐴 ↦ ((𝑚𝑛) ∪ {𝑝𝐴 ∣ ∃𝑞𝑚𝑟𝑛 𝑝 (𝑞 𝑟)})) = (𝑚 ∈ 𝒫 𝐴, 𝑛 ∈ 𝒫 𝐴 ↦ ((𝑚𝑛) ∪ {𝑝𝐴 ∣ ∃𝑞𝑚𝑟𝑛 𝑝 (𝑞 𝑟)}))
3023, 28, 29ovmpog 7514 . . . 4 ((𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴 ∧ ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)}) ∈ V) → (𝑋(𝑚 ∈ 𝒫 𝐴, 𝑛 ∈ 𝒫 𝐴 ↦ ((𝑚𝑛) ∪ {𝑝𝐴 ∣ ∃𝑞𝑚𝑟𝑛 𝑝 (𝑞 𝑟)}))𝑌) = ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)}))
3119, 30syl 17 . . 3 ((𝐾𝐵𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴) → (𝑋(𝑚 ∈ 𝒫 𝐴, 𝑛 ∈ 𝒫 𝐴 ↦ ((𝑚𝑛) ∪ {𝑝𝐴 ∣ ∃𝑞𝑚𝑟𝑛 𝑝 (𝑞 𝑟)}))𝑌) = ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)}))
3211, 31eqtrd 2776 . 2 ((𝐾𝐵𝑋 ∈ 𝒫 𝐴𝑌 ∈ 𝒫 𝐴) → (𝑋 + 𝑌) = ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)}))
331, 4, 5, 32syl3anbr 1162 1 ((𝐾𝐵𝑋𝐴𝑌𝐴) → (𝑋 + 𝑌) = ((𝑋𝑌) ∪ {𝑝𝐴 ∣ ∃𝑞𝑋𝑟𝑌 𝑝 (𝑞 𝑟)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wrex 3073  {crab 3407  Vcvv 3445  cun 3908  wss 3910  𝒫 cpw 4560   class class class wbr 5105  cfv 6496  (class class class)co 7357  cmpo 7359  lecple 17140  joincjn 18200  Atomscatm 37725  +𝑃cpadd 38258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-1st 7921  df-2nd 7922  df-padd 38259
This theorem is referenced by:  elpadd  38262  paddunssN  38271  paddcom  38276  paddssat  38277  sspadd1  38278  sspadd2  38279
  Copyright terms: Public domain W3C validator