MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tbw-ax2 Structured version   Visualization version   GIF version

Theorem tbw-ax2 1705
Description: The second of four axioms in the Tarski-Bernays-Wajsberg system. (Contributed by Anthony Hart, 13-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
tbw-ax2 (𝜑 → (𝜓𝜑))

Proof of Theorem tbw-ax2
StepHypRef Expression
1 ax-1 6 1 (𝜑 → (𝜓𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-1 6
This theorem is referenced by:  tbwlem1  1709  tbwlem3  1711  tbwlem5  1713  re1luk2  1715
  Copyright terms: Public domain W3C validator