MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tbw-ax1 Structured version   Visualization version   GIF version

Theorem tbw-ax1 1704
Description: The first of four axioms in the Tarski-Bernays-Wajsberg system. (Contributed by Anthony Hart, 13-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
tbw-ax1 ((𝜑𝜓) → ((𝜓𝜒) → (𝜑𝜒)))

Proof of Theorem tbw-ax1
StepHypRef Expression
1 imim1 83 1 ((𝜑𝜓) → ((𝜓𝜒) → (𝜑𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  tbwsyl  1708  tbwlem1  1709  tbwlem2  1710  tbwlem3  1711  tbwlem4  1712  tbwlem5  1713  re1luk1  1714  re1luk2  1715  re1luk3  1716
  Copyright terms: Public domain W3C validator