|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > tbwlem5 | Structured version Visualization version GIF version | ||
| Description: Used to rederive the Lukasiewicz axioms from Tarski-Bernays-Wajsberg'. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| tbwlem5 | ⊢ (((𝜑 → (𝜓 → ⊥)) → ⊥) → 𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | tbw-ax2 1700 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜑)) | |
| 2 | tbw-ax1 1699 | . . . 4 ⊢ ((𝜓 → 𝜑) → ((𝜑 → ⊥) → (𝜓 → ⊥))) | |
| 3 | 1, 2 | tbwsyl 1703 | . . 3 ⊢ (𝜑 → ((𝜑 → ⊥) → (𝜓 → ⊥))) | 
| 4 | tbwlem1 1704 | . . 3 ⊢ ((𝜑 → ((𝜑 → ⊥) → (𝜓 → ⊥))) → ((𝜑 → ⊥) → (𝜑 → (𝜓 → ⊥)))) | |
| 5 | 3, 4 | ax-mp 5 | . 2 ⊢ ((𝜑 → ⊥) → (𝜑 → (𝜓 → ⊥))) | 
| 6 | tbwlem4 1707 | . 2 ⊢ (((𝜑 → ⊥) → (𝜑 → (𝜓 → ⊥))) → (((𝜑 → (𝜓 → ⊥)) → ⊥) → 𝜑)) | |
| 7 | 5, 6 | ax-mp 5 | 1 ⊢ (((𝜑 → (𝜓 → ⊥)) → ⊥) → 𝜑) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ⊥wfal 1551 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-tru 1542 df-fal 1552 | 
| This theorem is referenced by: re1luk3 1711 | 
| Copyright terms: Public domain | W3C validator |