Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tbwlem5 | Structured version Visualization version GIF version |
Description: Used to rederive the Lukasiewicz axioms from Tarski-Bernays-Wajsberg'. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
tbwlem5 | ⊢ (((𝜑 → (𝜓 → ⊥)) → ⊥) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tbw-ax2 1704 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜑)) | |
2 | tbw-ax1 1703 | . . . 4 ⊢ ((𝜓 → 𝜑) → ((𝜑 → ⊥) → (𝜓 → ⊥))) | |
3 | 1, 2 | tbwsyl 1707 | . . 3 ⊢ (𝜑 → ((𝜑 → ⊥) → (𝜓 → ⊥))) |
4 | tbwlem1 1708 | . . 3 ⊢ ((𝜑 → ((𝜑 → ⊥) → (𝜓 → ⊥))) → ((𝜑 → ⊥) → (𝜑 → (𝜓 → ⊥)))) | |
5 | 3, 4 | ax-mp 5 | . 2 ⊢ ((𝜑 → ⊥) → (𝜑 → (𝜓 → ⊥))) |
6 | tbwlem4 1711 | . 2 ⊢ (((𝜑 → ⊥) → (𝜑 → (𝜓 → ⊥))) → (((𝜑 → (𝜓 → ⊥)) → ⊥) → 𝜑)) | |
7 | 5, 6 | ax-mp 5 | 1 ⊢ (((𝜑 → (𝜓 → ⊥)) → ⊥) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊥wfal 1551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-tru 1542 df-fal 1552 |
This theorem is referenced by: re1luk3 1715 |
Copyright terms: Public domain | W3C validator |