Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tbwlem1 Structured version   Visualization version   GIF version

Theorem tbwlem1 1707
 Description: Used to rederive the Lukasiewicz axioms from Tarski-Bernays-Wajsberg'. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
tbwlem1 ((𝜑 → (𝜓𝜒)) → (𝜓 → (𝜑𝜒)))

Proof of Theorem tbwlem1
StepHypRef Expression
1 tbw-ax2 1703 . . . 4 (𝜓 → ((𝜓𝜒) → 𝜓))
2 tbw-ax1 1702 . . . 4 (((𝜓𝜒) → 𝜓) → ((𝜓𝜒) → ((𝜓𝜒) → 𝜒)))
31, 2tbwsyl 1706 . . 3 (𝜓 → ((𝜓𝜒) → ((𝜓𝜒) → 𝜒)))
4 tbw-ax1 1702 . . . 4 (((𝜓𝜒) → ((𝜓𝜒) → 𝜒)) → ((((𝜓𝜒) → 𝜒) → 𝜒) → ((𝜓𝜒) → 𝜒)))
5 tbw-ax3 1704 . . . 4 (((((𝜓𝜒) → 𝜒) → 𝜒) → ((𝜓𝜒) → 𝜒)) → ((𝜓𝜒) → 𝜒))
64, 5tbwsyl 1706 . . 3 (((𝜓𝜒) → ((𝜓𝜒) → 𝜒)) → ((𝜓𝜒) → 𝜒))
73, 6tbwsyl 1706 . 2 (𝜓 → ((𝜓𝜒) → 𝜒))
8 tbw-ax1 1702 . 2 ((𝜑 → (𝜓𝜒)) → (((𝜓𝜒) → 𝜒) → (𝜑𝜒)))
9 tbw-ax1 1702 . 2 ((𝜓 → ((𝜓𝜒) → 𝜒)) → ((((𝜓𝜒) → 𝜒) → (𝜑𝜒)) → (𝜓 → (𝜑𝜒))))
107, 8, 9mpsyl 68 1 ((𝜑 → (𝜓𝜒)) → (𝜓 → (𝜑𝜒)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem is referenced by:  tbwlem2  1708  tbwlem4  1710  tbwlem5  1711  re1luk3  1714
 Copyright terms: Public domain W3C validator