|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > re1luk2 | Structured version Visualization version GIF version | ||
| Description: luk-2 1655 derived from the Tarski-Bernays-Wajsberg axioms. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| re1luk2 | ⊢ ((¬ 𝜑 → 𝜑) → 𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | tbw-negdf 1698 | . . . 4 ⊢ (((¬ 𝜑 → (𝜑 → ⊥)) → (((𝜑 → ⊥) → ¬ 𝜑) → ⊥)) → ⊥) | |
| 2 | tbw-ax2 1700 | . . . . 5 ⊢ ((((𝜑 → ⊥) → ¬ 𝜑) → ⊥) → ((¬ 𝜑 → (𝜑 → ⊥)) → (((𝜑 → ⊥) → ¬ 𝜑) → ⊥))) | |
| 3 | tbwlem4 1707 | . . . . 5 ⊢ (((((𝜑 → ⊥) → ¬ 𝜑) → ⊥) → ((¬ 𝜑 → (𝜑 → ⊥)) → (((𝜑 → ⊥) → ¬ 𝜑) → ⊥))) → ((((¬ 𝜑 → (𝜑 → ⊥)) → (((𝜑 → ⊥) → ¬ 𝜑) → ⊥)) → ⊥) → ((𝜑 → ⊥) → ¬ 𝜑))) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ ((((¬ 𝜑 → (𝜑 → ⊥)) → (((𝜑 → ⊥) → ¬ 𝜑) → ⊥)) → ⊥) → ((𝜑 → ⊥) → ¬ 𝜑)) | 
| 5 | 1, 4 | ax-mp 5 | . . 3 ⊢ ((𝜑 → ⊥) → ¬ 𝜑) | 
| 6 | tbw-ax1 1699 | . . 3 ⊢ (((𝜑 → ⊥) → ¬ 𝜑) → ((¬ 𝜑 → 𝜑) → ((𝜑 → ⊥) → 𝜑))) | |
| 7 | 5, 6 | ax-mp 5 | . 2 ⊢ ((¬ 𝜑 → 𝜑) → ((𝜑 → ⊥) → 𝜑)) | 
| 8 | tbw-ax3 1701 | . 2 ⊢ (((𝜑 → ⊥) → 𝜑) → 𝜑) | |
| 9 | 7, 8 | tbwsyl 1703 | 1 ⊢ ((¬ 𝜑 → 𝜑) → 𝜑) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ⊥wfal 1551 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-tru 1542 df-fal 1552 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |