Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > re1luk2 | Structured version Visualization version GIF version |
Description: luk-2 1659 derived from the Tarski-Bernays-Wajsberg axioms. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
re1luk2 | ⊢ ((¬ 𝜑 → 𝜑) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tbw-negdf 1702 | . . . 4 ⊢ (((¬ 𝜑 → (𝜑 → ⊥)) → (((𝜑 → ⊥) → ¬ 𝜑) → ⊥)) → ⊥) | |
2 | tbw-ax2 1704 | . . . . 5 ⊢ ((((𝜑 → ⊥) → ¬ 𝜑) → ⊥) → ((¬ 𝜑 → (𝜑 → ⊥)) → (((𝜑 → ⊥) → ¬ 𝜑) → ⊥))) | |
3 | tbwlem4 1711 | . . . . 5 ⊢ (((((𝜑 → ⊥) → ¬ 𝜑) → ⊥) → ((¬ 𝜑 → (𝜑 → ⊥)) → (((𝜑 → ⊥) → ¬ 𝜑) → ⊥))) → ((((¬ 𝜑 → (𝜑 → ⊥)) → (((𝜑 → ⊥) → ¬ 𝜑) → ⊥)) → ⊥) → ((𝜑 → ⊥) → ¬ 𝜑))) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ ((((¬ 𝜑 → (𝜑 → ⊥)) → (((𝜑 → ⊥) → ¬ 𝜑) → ⊥)) → ⊥) → ((𝜑 → ⊥) → ¬ 𝜑)) |
5 | 1, 4 | ax-mp 5 | . . 3 ⊢ ((𝜑 → ⊥) → ¬ 𝜑) |
6 | tbw-ax1 1703 | . . 3 ⊢ (((𝜑 → ⊥) → ¬ 𝜑) → ((¬ 𝜑 → 𝜑) → ((𝜑 → ⊥) → 𝜑))) | |
7 | 5, 6 | ax-mp 5 | . 2 ⊢ ((¬ 𝜑 → 𝜑) → ((𝜑 → ⊥) → 𝜑)) |
8 | tbw-ax3 1705 | . 2 ⊢ (((𝜑 → ⊥) → 𝜑) → 𝜑) | |
9 | 7, 8 | tbwsyl 1707 | 1 ⊢ ((¬ 𝜑 → 𝜑) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ⊥wfal 1551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-tru 1542 df-fal 1552 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |