Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > truortru | Structured version Visualization version GIF version |
Description: A ∨ identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.) |
Ref | Expression |
---|---|
truortru | ⊢ ((⊤ ∨ ⊤) ↔ ⊤) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oridm 901 | 1 ⊢ ((⊤ ∨ ⊤) ↔ ⊤) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∨ wo 843 ⊤wtru 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 844 |
This theorem is referenced by: trunortru 1588 |
Copyright terms: Public domain | W3C validator |