MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trunortru Structured version   Visualization version   GIF version

Theorem trunortru 1587
Description: A identity. (Contributed by Remi, 25-Oct-2023.) (Proof shortened by Wolf Lammen, 7-Dec-2023.)
Assertion
Ref Expression
trunortru ((⊤ ⊤) ↔ ⊥)

Proof of Theorem trunortru
StepHypRef Expression
1 df-nor 1522 . . 3 ((⊤ ⊤) ↔ ¬ (⊤ ∨ ⊤))
2 truortru 1575 . . 3 ((⊤ ∨ ⊤) ↔ ⊤)
31, 2xchbinx 337 . 2 ((⊤ ⊤) ↔ ¬ ⊤)
4 df-fal 1551 . 2 (⊥ ↔ ¬ ⊤)
53, 4bitr4i 281 1 ((⊤ ⊤) ↔ ⊥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 209  wo 844   wnor 1521  wtru 1539  wfal 1550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-or 845  df-nor 1522  df-fal 1551
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator