|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > trunortru | Structured version Visualization version GIF version | ||
| Description: A ⊽ identity. (Contributed by Remi, 25-Oct-2023.) (Proof shortened by Wolf Lammen, 7-Dec-2023.) | 
| Ref | Expression | 
|---|---|
| trunortru | ⊢ ((⊤ ⊽ ⊤) ↔ ⊥) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-nor 1528 | . . 3 ⊢ ((⊤ ⊽ ⊤) ↔ ¬ (⊤ ∨ ⊤)) | |
| 2 | truortru 1576 | . . 3 ⊢ ((⊤ ∨ ⊤) ↔ ⊤) | |
| 3 | 1, 2 | xchbinx 334 | . 2 ⊢ ((⊤ ⊽ ⊤) ↔ ¬ ⊤) | 
| 4 | df-fal 1552 | . 2 ⊢ (⊥ ↔ ¬ ⊤) | |
| 5 | 3, 4 | bitr4i 278 | 1 ⊢ ((⊤ ⊽ ⊤) ↔ ⊥) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 ↔ wb 206 ∨ wo 847 ⊽ wnor 1527 ⊤wtru 1540 ⊥wfal 1551 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-or 848 df-nor 1528 df-fal 1552 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |