MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  truorfal Structured version   Visualization version   GIF version

Theorem truorfal 1580
Description: A identity. (Contributed by Anthony Hart, 22-Oct-2010.)
Assertion
Ref Expression
truorfal ((⊤ ∨ ⊥) ↔ ⊤)

Proof of Theorem truorfal
StepHypRef Expression
1 tru 1546 . . 3
21orci 862 . 2 (⊤ ∨ ⊥)
32bitru 1551 1 ((⊤ ∨ ⊥) ↔ ⊤)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wo 844  wtru 1543  wfal 1554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 845  df-tru 1545
This theorem is referenced by:  trunorfal  1593
  Copyright terms: Public domain W3C validator