| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oridm | Structured version Visualization version GIF version | ||
| Description: Idempotent law for disjunction. Theorem *4.25 of [WhiteheadRussell] p. 117. (Contributed by NM, 11-May-1993.) (Proof shortened by Andrew Salmon, 16-Apr-2011.) (Proof shortened by Wolf Lammen, 10-Mar-2013.) |
| Ref | Expression |
|---|---|
| oridm | ⊢ ((𝜑 ∨ 𝜑) ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm1.2 903 | . 2 ⊢ ((𝜑 ∨ 𝜑) → 𝜑) | |
| 2 | pm2.07 902 | . 2 ⊢ (𝜑 → (𝜑 ∨ 𝜑)) | |
| 3 | 1, 2 | impbii 209 | 1 ⊢ ((𝜑 ∨ 𝜑) ↔ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: pm4.25 905 orordi 928 orordir 929 nornot 1531 truortru 1577 falorfal 1580 unidm 4120 dfsn2ALT 4611 preqsnd 4823 sucexeloniOLD 7786 tz7.48lem 8409 msq0i 11827 msq0d 11828 prmdvdsexp 16685 metn0 24248 rrxcph 25292 nb3grprlem2 29308 pm11.7 44385 euoreqb 47107 |
| Copyright terms: Public domain | W3C validator |