| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oridm | Structured version Visualization version GIF version | ||
| Description: Idempotent law for disjunction. Theorem *4.25 of [WhiteheadRussell] p. 117. (Contributed by NM, 11-May-1993.) (Proof shortened by Andrew Salmon, 16-Apr-2011.) (Proof shortened by Wolf Lammen, 10-Mar-2013.) |
| Ref | Expression |
|---|---|
| oridm | ⊢ ((𝜑 ∨ 𝜑) ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm1.2 903 | . 2 ⊢ ((𝜑 ∨ 𝜑) → 𝜑) | |
| 2 | pm2.07 902 | . 2 ⊢ (𝜑 → (𝜑 ∨ 𝜑)) | |
| 3 | 1, 2 | impbii 209 | 1 ⊢ ((𝜑 ∨ 𝜑) ↔ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: pm4.25 905 orordi 928 orordir 929 nornot 1531 truortru 1577 falorfal 1580 unidm 4137 dfsn2ALT 4628 preqsnd 4840 sucexeloniOLD 7809 suceloniOLD 7811 tz7.48lem 8460 msq0i 11889 msq0d 11891 prmdvdsexp 16739 metn0 24304 rrxcph 25349 nb3grprlem2 29365 pm11.7 44387 euoreqb 47105 |
| Copyright terms: Public domain | W3C validator |