Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oridm | Structured version Visualization version GIF version |
Description: Idempotent law for disjunction. Theorem *4.25 of [WhiteheadRussell] p. 117. (Contributed by NM, 11-May-1993.) (Proof shortened by Andrew Salmon, 16-Apr-2011.) (Proof shortened by Wolf Lammen, 10-Mar-2013.) |
Ref | Expression |
---|---|
oridm | ⊢ ((𝜑 ∨ 𝜑) ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm1.2 901 | . 2 ⊢ ((𝜑 ∨ 𝜑) → 𝜑) | |
2 | pm2.07 900 | . 2 ⊢ (𝜑 → (𝜑 ∨ 𝜑)) | |
3 | 1, 2 | impbii 208 | 1 ⊢ ((𝜑 ∨ 𝜑) ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∨ wo 844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 845 |
This theorem is referenced by: pm4.25 903 orordi 926 orordir 927 nornot 1529 truortru 1576 falorfal 1579 unidm 4086 dfsn2ALT 4581 preqsnd 4789 sucexeloni 7658 suceloniOLD 7660 tz7.48lem 8272 msq0i 11622 msq0d 11624 prmdvdsexp 16420 prmdvdssqOLD 16424 metn0 23513 rrxcph 24556 nb3grprlem2 27748 pm11.7 42014 euoreqb 44601 |
Copyright terms: Public domain | W3C validator |