Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oridm | Structured version Visualization version GIF version |
Description: Idempotent law for disjunction. Theorem *4.25 of [WhiteheadRussell] p. 117. (Contributed by NM, 11-May-1993.) (Proof shortened by Andrew Salmon, 16-Apr-2011.) (Proof shortened by Wolf Lammen, 10-Mar-2013.) |
Ref | Expression |
---|---|
oridm | ⊢ ((𝜑 ∨ 𝜑) ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm1.2 901 | . 2 ⊢ ((𝜑 ∨ 𝜑) → 𝜑) | |
2 | pm2.07 900 | . 2 ⊢ (𝜑 → (𝜑 ∨ 𝜑)) | |
3 | 1, 2 | impbii 208 | 1 ⊢ ((𝜑 ∨ 𝜑) ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∨ wo 844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 845 |
This theorem is referenced by: pm4.25 903 orordi 926 orordir 927 nornot 1529 truortru 1579 falorfal 1582 unidm 4091 dfsn2ALT 4587 preqsnd 4795 sucexeloni 7652 suceloniOLD 7654 tz7.48lem 8263 msq0i 11622 msq0d 11624 prmdvdsexp 16418 prmdvdssqOLD 16422 metn0 23511 rrxcph 24554 nb3grprlem2 27746 pm11.7 41984 euoreqb 44569 |
Copyright terms: Public domain | W3C validator |