![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oridm | Structured version Visualization version GIF version |
Description: Idempotent law for disjunction. Theorem *4.25 of [WhiteheadRussell] p. 117. (Contributed by NM, 11-May-1993.) (Proof shortened by Andrew Salmon, 16-Apr-2011.) (Proof shortened by Wolf Lammen, 10-Mar-2013.) |
Ref | Expression |
---|---|
oridm | ⊢ ((𝜑 ∨ 𝜑) ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm1.2 902 | . 2 ⊢ ((𝜑 ∨ 𝜑) → 𝜑) | |
2 | pm2.07 901 | . 2 ⊢ (𝜑 → (𝜑 ∨ 𝜑)) | |
3 | 1, 2 | impbii 208 | 1 ⊢ ((𝜑 ∨ 𝜑) ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∨ wo 846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 847 |
This theorem is referenced by: pm4.25 904 orordi 927 orordir 928 nornot 1525 truortru 1571 falorfal 1574 unidm 4148 dfsn2ALT 4644 preqsnd 4855 sucexeloniOLD 7805 suceloniOLD 7807 tz7.48lem 8453 msq0i 11877 msq0d 11879 prmdvdsexp 16671 prmdvdssqOLD 16675 metn0 24240 rrxcph 25294 nb3grprlem2 29168 pm11.7 43746 euoreqb 46402 |
Copyright terms: Public domain | W3C validator |