![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oridm | Structured version Visualization version GIF version |
Description: Idempotent law for disjunction. Theorem *4.25 of [WhiteheadRussell] p. 117. (Contributed by NM, 11-May-1993.) (Proof shortened by Andrew Salmon, 16-Apr-2011.) (Proof shortened by Wolf Lammen, 10-Mar-2013.) |
Ref | Expression |
---|---|
oridm | ⊢ ((𝜑 ∨ 𝜑) ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm1.2 928 | . 2 ⊢ ((𝜑 ∨ 𝜑) → 𝜑) | |
2 | pm2.07 927 | . 2 ⊢ (𝜑 → (𝜑 ∨ 𝜑)) | |
3 | 1, 2 | impbii 201 | 1 ⊢ ((𝜑 ∨ 𝜑) ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∨ wo 874 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-or 875 |
This theorem is referenced by: pm4.25 930 orordi 953 orordir 954 truortru 1691 falorfal 1694 unidm 3958 dfsn2ALT 4392 preqsnd 4581 preqsndOLD 4582 preqsnOLD 4586 suceloni 7251 tz7.48lem 7779 msq0i 10970 msq0d 10972 prmdvdsexp 15764 metn0 22497 rrxcph 23522 nb3grprlem2 26629 pdivsq 32153 pm11.7 39382 |
Copyright terms: Public domain | W3C validator |