Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oridm | Structured version Visualization version GIF version |
Description: Idempotent law for disjunction. Theorem *4.25 of [WhiteheadRussell] p. 117. (Contributed by NM, 11-May-1993.) (Proof shortened by Andrew Salmon, 16-Apr-2011.) (Proof shortened by Wolf Lammen, 10-Mar-2013.) |
Ref | Expression |
---|---|
oridm | ⊢ ((𝜑 ∨ 𝜑) ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm1.2 900 | . 2 ⊢ ((𝜑 ∨ 𝜑) → 𝜑) | |
2 | pm2.07 899 | . 2 ⊢ (𝜑 → (𝜑 ∨ 𝜑)) | |
3 | 1, 2 | impbii 208 | 1 ⊢ ((𝜑 ∨ 𝜑) ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∨ wo 843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 844 |
This theorem is referenced by: pm4.25 902 orordi 925 orordir 926 nornot 1526 truortru 1576 falorfal 1579 unidm 4082 dfsn2ALT 4578 preqsnd 4786 suceloni 7635 tz7.48lem 8242 msq0i 11552 msq0d 11554 prmdvdsexp 16348 prmdvdssqOLD 16352 metn0 23421 rrxcph 24461 nb3grprlem2 27651 pm11.7 41903 euoreqb 44488 |
Copyright terms: Public domain | W3C validator |