MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oridm Structured version   Visualization version   GIF version

Theorem oridm 903
Description: Idempotent law for disjunction. Theorem *4.25 of [WhiteheadRussell] p. 117. (Contributed by NM, 11-May-1993.) (Proof shortened by Andrew Salmon, 16-Apr-2011.) (Proof shortened by Wolf Lammen, 10-Mar-2013.)
Assertion
Ref Expression
oridm ((𝜑𝜑) ↔ 𝜑)

Proof of Theorem oridm
StepHypRef Expression
1 pm1.2 902 . 2 ((𝜑𝜑) → 𝜑)
2 pm2.07 901 . 2 (𝜑 → (𝜑𝜑))
31, 2impbii 208 1 ((𝜑𝜑) ↔ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wo 845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 846
This theorem is referenced by:  pm4.25  904  orordi  927  orordir  928  nornot  1532  truortru  1578  falorfal  1581  unidm  4151  dfsn2ALT  4647  preqsnd  4858  sucexeloniOLD  7794  suceloniOLD  7796  tz7.48lem  8437  msq0i  11857  msq0d  11859  prmdvdsexp  16648  prmdvdssqOLD  16652  metn0  23857  rrxcph  24900  nb3grprlem2  28627  pm11.7  43140  euoreqb  45803
  Copyright terms: Public domain W3C validator