MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oridm Structured version   Visualization version   GIF version

Theorem oridm 904
Description: Idempotent law for disjunction. Theorem *4.25 of [WhiteheadRussell] p. 117. (Contributed by NM, 11-May-1993.) (Proof shortened by Andrew Salmon, 16-Apr-2011.) (Proof shortened by Wolf Lammen, 10-Mar-2013.)
Assertion
Ref Expression
oridm ((𝜑𝜑) ↔ 𝜑)

Proof of Theorem oridm
StepHypRef Expression
1 pm1.2 903 . 2 ((𝜑𝜑) → 𝜑)
2 pm2.07 902 . 2 (𝜑 → (𝜑𝜑))
31, 2impbii 209 1 ((𝜑𝜑) ↔ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wo 847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 848
This theorem is referenced by:  pm4.25  905  orordi  928  orordir  929  nornot  1532  truortru  1578  falorfal  1581  unidm  4104  dfsn2ALT  4595  preqsnd  4808  tz7.48lem  8360  msq0i  11766  msq0d  11767  prmdvdsexp  16626  metn0  24275  rrxcph  25319  nb3grprlem2  29359  pm11.7  44437  euoreqb  47148
  Copyright terms: Public domain W3C validator