| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oridm | Structured version Visualization version GIF version | ||
| Description: Idempotent law for disjunction. Theorem *4.25 of [WhiteheadRussell] p. 117. (Contributed by NM, 11-May-1993.) (Proof shortened by Andrew Salmon, 16-Apr-2011.) (Proof shortened by Wolf Lammen, 10-Mar-2013.) |
| Ref | Expression |
|---|---|
| oridm | ⊢ ((𝜑 ∨ 𝜑) ↔ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm1.2 903 | . 2 ⊢ ((𝜑 ∨ 𝜑) → 𝜑) | |
| 2 | pm2.07 902 | . 2 ⊢ (𝜑 → (𝜑 ∨ 𝜑)) | |
| 3 | 1, 2 | impbii 209 | 1 ⊢ ((𝜑 ∨ 𝜑) ↔ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 |
| This theorem is referenced by: pm4.25 905 orordi 928 orordir 929 nornot 1531 truortru 1577 falorfal 1580 unidm 4108 dfsn2ALT 4599 preqsnd 4810 tz7.48lem 8363 msq0i 11769 msq0d 11770 prmdvdsexp 16626 metn0 24246 rrxcph 25290 nb3grprlem2 29326 pm11.7 44369 euoreqb 47093 |
| Copyright terms: Public domain | W3C validator |