MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oridm Structured version   Visualization version   GIF version

Theorem oridm 903
Description: Idempotent law for disjunction. Theorem *4.25 of [WhiteheadRussell] p. 117. (Contributed by NM, 11-May-1993.) (Proof shortened by Andrew Salmon, 16-Apr-2011.) (Proof shortened by Wolf Lammen, 10-Mar-2013.)
Assertion
Ref Expression
oridm ((𝜑𝜑) ↔ 𝜑)

Proof of Theorem oridm
StepHypRef Expression
1 pm1.2 902 . 2 ((𝜑𝜑) → 𝜑)
2 pm2.07 901 . 2 (𝜑 → (𝜑𝜑))
31, 2impbii 209 1 ((𝜑𝜑) ↔ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wo 846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 847
This theorem is referenced by:  pm4.25  904  orordi  927  orordir  928  nornot  1528  truortru  1574  falorfal  1577  unidm  4180  dfsn2ALT  4669  preqsnd  4883  sucexeloniOLD  7846  suceloniOLD  7848  tz7.48lem  8497  msq0i  11937  msq0d  11939  prmdvdsexp  16762  metn0  24391  rrxcph  25445  nb3grprlem2  29416  pm11.7  44365  euoreqb  47024
  Copyright terms: Public domain W3C validator