MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oridm Structured version   Visualization version   GIF version

Theorem oridm 904
Description: Idempotent law for disjunction. Theorem *4.25 of [WhiteheadRussell] p. 117. (Contributed by NM, 11-May-1993.) (Proof shortened by Andrew Salmon, 16-Apr-2011.) (Proof shortened by Wolf Lammen, 10-Mar-2013.)
Assertion
Ref Expression
oridm ((𝜑𝜑) ↔ 𝜑)

Proof of Theorem oridm
StepHypRef Expression
1 pm1.2 903 . 2 ((𝜑𝜑) → 𝜑)
2 pm2.07 902 . 2 (𝜑 → (𝜑𝜑))
31, 2impbii 209 1 ((𝜑𝜑) ↔ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wo 847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 848
This theorem is referenced by:  pm4.25  905  orordi  928  orordir  929  nornot  1531  truortru  1577  falorfal  1580  unidm  4116  dfsn2ALT  4607  preqsnd  4819  sucexeloniOLD  7766  tz7.48lem  8386  msq0i  11803  msq0d  11804  prmdvdsexp  16661  metn0  24224  rrxcph  25268  nb3grprlem2  29284  pm11.7  44358  euoreqb  47083
  Copyright terms: Public domain W3C validator