MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oridm Structured version   Visualization version   GIF version

Theorem oridm 904
Description: Idempotent law for disjunction. Theorem *4.25 of [WhiteheadRussell] p. 117. (Contributed by NM, 11-May-1993.) (Proof shortened by Andrew Salmon, 16-Apr-2011.) (Proof shortened by Wolf Lammen, 10-Mar-2013.)
Assertion
Ref Expression
oridm ((𝜑𝜑) ↔ 𝜑)

Proof of Theorem oridm
StepHypRef Expression
1 pm1.2 903 . 2 ((𝜑𝜑) → 𝜑)
2 pm2.07 902 . 2 (𝜑 → (𝜑𝜑))
31, 2impbii 209 1 ((𝜑𝜑) ↔ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wo 847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 848
This theorem is referenced by:  pm4.25  905  orordi  928  orordir  929  nornot  1528  truortru  1574  falorfal  1577  unidm  4167  dfsn2ALT  4652  preqsnd  4864  sucexeloniOLD  7830  suceloniOLD  7832  tz7.48lem  8480  msq0i  11908  msq0d  11910  prmdvdsexp  16749  metn0  24386  rrxcph  25440  nb3grprlem2  29413  pm11.7  44392  euoreqb  47059
  Copyright terms: Public domain W3C validator