MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oridm Structured version   Visualization version   GIF version

Theorem oridm 902
Description: Idempotent law for disjunction. Theorem *4.25 of [WhiteheadRussell] p. 117. (Contributed by NM, 11-May-1993.) (Proof shortened by Andrew Salmon, 16-Apr-2011.) (Proof shortened by Wolf Lammen, 10-Mar-2013.)
Assertion
Ref Expression
oridm ((𝜑𝜑) ↔ 𝜑)

Proof of Theorem oridm
StepHypRef Expression
1 pm1.2 901 . 2 ((𝜑𝜑) → 𝜑)
2 pm2.07 900 . 2 (𝜑 → (𝜑𝜑))
31, 2impbii 208 1 ((𝜑𝜑) ↔ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wo 844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 845
This theorem is referenced by:  pm4.25  903  orordi  926  orordir  927  nornot  1529  truortru  1576  falorfal  1579  unidm  4086  dfsn2ALT  4581  preqsnd  4789  sucexeloni  7658  suceloniOLD  7660  tz7.48lem  8272  msq0i  11622  msq0d  11624  prmdvdsexp  16420  prmdvdssqOLD  16424  metn0  23513  rrxcph  24556  nb3grprlem2  27748  pm11.7  42014  euoreqb  44601
  Copyright terms: Public domain W3C validator