MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oridm Structured version   Visualization version   GIF version

Theorem oridm 904
Description: Idempotent law for disjunction. Theorem *4.25 of [WhiteheadRussell] p. 117. (Contributed by NM, 11-May-1993.) (Proof shortened by Andrew Salmon, 16-Apr-2011.) (Proof shortened by Wolf Lammen, 10-Mar-2013.)
Assertion
Ref Expression
oridm ((𝜑𝜑) ↔ 𝜑)

Proof of Theorem oridm
StepHypRef Expression
1 pm1.2 903 . 2 ((𝜑𝜑) → 𝜑)
2 pm2.07 902 . 2 (𝜑 → (𝜑𝜑))
31, 2impbii 209 1 ((𝜑𝜑) ↔ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wo 847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 848
This theorem is referenced by:  pm4.25  905  orordi  928  orordir  929  nornot  1531  truortru  1577  falorfal  1580  unidm  4137  dfsn2ALT  4628  preqsnd  4840  sucexeloniOLD  7809  suceloniOLD  7811  tz7.48lem  8460  msq0i  11889  msq0d  11891  prmdvdsexp  16739  metn0  24304  rrxcph  25349  nb3grprlem2  29365  pm11.7  44387  euoreqb  47105
  Copyright terms: Public domain W3C validator