| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > uun2221 | Structured version Visualization version GIF version | ||
| Description: A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 30-Dec-2016.) (Proof modification is discouraged.) (New usage is discouraged.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| uun2221.1 | ⊢ ((𝜑 ∧ 𝜑 ∧ (𝜓 ∧ 𝜑)) → 𝜒) |
| Ref | Expression |
|---|---|
| uun2221 | ⊢ ((𝜓 ∧ 𝜑) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uun2221.1 | . 2 ⊢ ((𝜑 ∧ 𝜑 ∧ (𝜓 ∧ 𝜑)) → 𝜒) | |
| 2 | 3anass 1094 | . . . . . 6 ⊢ ((𝜑 ∧ 𝜑 ∧ (𝜓 ∧ 𝜑)) ↔ (𝜑 ∧ (𝜑 ∧ (𝜓 ∧ 𝜑)))) | |
| 3 | anabs5 663 | . . . . . 6 ⊢ ((𝜑 ∧ (𝜑 ∧ (𝜓 ∧ 𝜑))) ↔ (𝜑 ∧ (𝜓 ∧ 𝜑))) | |
| 4 | 2, 3 | bitri 275 | . . . . 5 ⊢ ((𝜑 ∧ 𝜑 ∧ (𝜓 ∧ 𝜑)) ↔ (𝜑 ∧ (𝜓 ∧ 𝜑))) |
| 5 | ancom 460 | . . . . . 6 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑)) | |
| 6 | 5 | anbi2i 623 | . . . . 5 ⊢ ((𝜑 ∧ (𝜑 ∧ 𝜓)) ↔ (𝜑 ∧ (𝜓 ∧ 𝜑))) |
| 7 | 4, 6 | bitr4i 278 | . . . 4 ⊢ ((𝜑 ∧ 𝜑 ∧ (𝜓 ∧ 𝜑)) ↔ (𝜑 ∧ (𝜑 ∧ 𝜓))) |
| 8 | anabs5 663 | . . . . 5 ⊢ ((𝜑 ∧ (𝜑 ∧ 𝜓)) ↔ (𝜑 ∧ 𝜓)) | |
| 9 | 8, 5 | bitri 275 | . . . 4 ⊢ ((𝜑 ∧ (𝜑 ∧ 𝜓)) ↔ (𝜓 ∧ 𝜑)) |
| 10 | 7, 9 | bitri 275 | . . 3 ⊢ ((𝜑 ∧ 𝜑 ∧ (𝜓 ∧ 𝜑)) ↔ (𝜓 ∧ 𝜑)) |
| 11 | 10 | imbi1i 349 | . 2 ⊢ (((𝜑 ∧ 𝜑 ∧ (𝜓 ∧ 𝜑)) → 𝜒) ↔ ((𝜓 ∧ 𝜑) → 𝜒)) |
| 12 | 1, 11 | mpbi 230 | 1 ⊢ ((𝜓 ∧ 𝜑) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |