Mathbox for Alan Sare < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uun2221 Structured version   Visualization version   GIF version

Theorem uun2221 41127
 Description: A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 30-Dec-2016.) (Proof modification is discouraged.) (New usage is discouraged.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
uun2221.1 ((𝜑𝜑 ∧ (𝜓𝜑)) → 𝜒)
Assertion
Ref Expression
uun2221 ((𝜓𝜑) → 𝜒)

Proof of Theorem uun2221
StepHypRef Expression
1 uun2221.1 . 2 ((𝜑𝜑 ∧ (𝜓𝜑)) → 𝜒)
2 3anass 1089 . . . . . 6 ((𝜑𝜑 ∧ (𝜓𝜑)) ↔ (𝜑 ∧ (𝜑 ∧ (𝜓𝜑))))
3 anabs5 661 . . . . . 6 ((𝜑 ∧ (𝜑 ∧ (𝜓𝜑))) ↔ (𝜑 ∧ (𝜓𝜑)))
42, 3bitri 277 . . . . 5 ((𝜑𝜑 ∧ (𝜓𝜑)) ↔ (𝜑 ∧ (𝜓𝜑)))
5 ancom 463 . . . . . 6 ((𝜑𝜓) ↔ (𝜓𝜑))
65anbi2i 624 . . . . 5 ((𝜑 ∧ (𝜑𝜓)) ↔ (𝜑 ∧ (𝜓𝜑)))
74, 6bitr4i 280 . . . 4 ((𝜑𝜑 ∧ (𝜓𝜑)) ↔ (𝜑 ∧ (𝜑𝜓)))
8 anabs5 661 . . . . 5 ((𝜑 ∧ (𝜑𝜓)) ↔ (𝜑𝜓))
98, 5bitri 277 . . . 4 ((𝜑 ∧ (𝜑𝜓)) ↔ (𝜓𝜑))
107, 9bitri 277 . . 3 ((𝜑𝜑 ∧ (𝜓𝜑)) ↔ (𝜓𝜑))
1110imbi1i 352 . 2 (((𝜑𝜑 ∧ (𝜓𝜑)) → 𝜒) ↔ ((𝜓𝜑) → 𝜒))
121, 11mpbi 232 1 ((𝜓𝜑) → 𝜒)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 398   ∧ w3a 1081 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 209  df-an 399  df-3an 1083 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator