MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anabs5 Structured version   Visualization version   GIF version

Theorem anabs5 663
Description: Absorption into embedded conjunct. (Contributed by NM, 20-Jul-1996.) (Proof shortened by Wolf Lammen, 9-Dec-2012.)
Assertion
Ref Expression
anabs5 ((𝜑 ∧ (𝜑𝜓)) ↔ (𝜑𝜓))

Proof of Theorem anabs5
StepHypRef Expression
1 ibar 528 . . 3 (𝜑 → (𝜓 ↔ (𝜑𝜓)))
21bicomd 223 . 2 (𝜑 → ((𝜑𝜓) ↔ 𝜓))
32pm5.32i 574 1 ((𝜑 ∧ (𝜑𝜓)) ↔ (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  rmoanidOLD  3368  reuanidOLD  3369  axrep5  5245  elinintrab  43573  2sb5nd  44557  eelTT1  44706  uun121  44779  uunTT1  44789  uunTT1p1  44790  uunTT1p2  44791  uun111  44801  uun2221  44809  uun2221p1  44810  uun2221p2  44811  2sb5ndVD  44906  2sb5ndALT  44928
  Copyright terms: Public domain W3C validator