Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > anabs5 | Structured version Visualization version GIF version |
Description: Absorption into embedded conjunct. (Contributed by NM, 20-Jul-1996.) (Proof shortened by Wolf Lammen, 9-Dec-2012.) |
Ref | Expression |
---|---|
anabs5 | ⊢ ((𝜑 ∧ (𝜑 ∧ 𝜓)) ↔ (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ibar 528 | . . 3 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) | |
2 | 1 | bicomd 222 | . 2 ⊢ (𝜑 → ((𝜑 ∧ 𝜓) ↔ 𝜓)) |
3 | 2 | pm5.32i 574 | 1 ⊢ ((𝜑 ∧ (𝜑 ∧ 𝜓)) ↔ (𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: reuanid 3256 rmoanid 3257 axrep5 5211 elinintrab 41074 2sb5nd 42069 eelTT1 42219 uun121 42292 uunTT1 42302 uunTT1p1 42303 uunTT1p2 42304 uun111 42314 uun2221 42322 uun2221p1 42323 uun2221p2 42324 2sb5ndVD 42419 2sb5ndALT 42441 |
Copyright terms: Public domain | W3C validator |