MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anabs5 Structured version   Visualization version   GIF version

Theorem anabs5 663
Description: Absorption into embedded conjunct. (Contributed by NM, 20-Jul-1996.) (Proof shortened by Wolf Lammen, 9-Dec-2012.)
Assertion
Ref Expression
anabs5 ((𝜑 ∧ (𝜑𝜓)) ↔ (𝜑𝜓))

Proof of Theorem anabs5
StepHypRef Expression
1 ibar 528 . . 3 (𝜑 → (𝜓 ↔ (𝜑𝜓)))
21bicomd 223 . 2 (𝜑 → ((𝜑𝜓) ↔ 𝜓))
32pm5.32i 574 1 ((𝜑 ∧ (𝜑𝜓)) ↔ (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  rmoanidOLD  3357  reuanidOLD  3358  axrep5  5229  elinintrab  43553  2sb5nd  44537  eelTT1  44686  uun121  44759  uunTT1  44769  uunTT1p1  44770  uunTT1p2  44771  uun111  44781  uun2221  44789  uun2221p1  44790  uun2221p2  44791  2sb5ndVD  44886  2sb5ndALT  44908
  Copyright terms: Public domain W3C validator