MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anabs5 Structured version   Visualization version   GIF version

Theorem anabs5 662
Description: Absorption into embedded conjunct. (Contributed by NM, 20-Jul-1996.) (Proof shortened by Wolf Lammen, 9-Dec-2012.)
Assertion
Ref Expression
anabs5 ((𝜑 ∧ (𝜑𝜓)) ↔ (𝜑𝜓))

Proof of Theorem anabs5
StepHypRef Expression
1 ibar 528 . . 3 (𝜑 → (𝜓 ↔ (𝜑𝜓)))
21bicomd 222 . 2 (𝜑 → ((𝜑𝜓) ↔ 𝜓))
32pm5.32i 574 1 ((𝜑 ∧ (𝜑𝜓)) ↔ (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  rmoanidOLD  3385  reuanidOLD  3386  axrep5  5291  elinintrab  43007  2sb5nd  43999  eelTT1  44149  uun121  44222  uunTT1  44232  uunTT1p1  44233  uunTT1p2  44234  uun111  44244  uun2221  44252  uun2221p1  44253  uun2221p2  44254  2sb5ndVD  44349  2sb5ndALT  44371
  Copyright terms: Public domain W3C validator