![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > anabs5 | Structured version Visualization version GIF version |
Description: Absorption into embedded conjunct. (Contributed by NM, 20-Jul-1996.) (Proof shortened by Wolf Lammen, 9-Dec-2012.) |
Ref | Expression |
---|---|
anabs5 | ⊢ ((𝜑 ∧ (𝜑 ∧ 𝜓)) ↔ (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ibar 528 | . . 3 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) | |
2 | 1 | bicomd 222 | . 2 ⊢ (𝜑 → ((𝜑 ∧ 𝜓) ↔ 𝜓)) |
3 | 2 | pm5.32i 574 | 1 ⊢ ((𝜑 ∧ (𝜑 ∧ 𝜓)) ↔ (𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: rmoanidOLD 3385 reuanidOLD 3386 axrep5 5291 elinintrab 43007 2sb5nd 43999 eelTT1 44149 uun121 44222 uunTT1 44232 uunTT1p1 44233 uunTT1p2 44234 uun111 44244 uun2221 44252 uun2221p1 44253 uun2221p2 44254 2sb5ndVD 44349 2sb5ndALT 44371 |
Copyright terms: Public domain | W3C validator |