MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anabs5 Structured version   Visualization version   GIF version

Theorem anabs5 660
Description: Absorption into embedded conjunct. (Contributed by NM, 20-Jul-1996.) (Proof shortened by Wolf Lammen, 9-Dec-2012.)
Assertion
Ref Expression
anabs5 ((𝜑 ∧ (𝜑𝜓)) ↔ (𝜑𝜓))

Proof of Theorem anabs5
StepHypRef Expression
1 ibar 529 . . 3 (𝜑 → (𝜓 ↔ (𝜑𝜓)))
21bicomd 222 . 2 (𝜑 → ((𝜑𝜓) ↔ 𝜓))
32pm5.32i 575 1 ((𝜑 ∧ (𝜑𝜓)) ↔ (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by:  reuanid  3298  rmoanid  3299  axrep5  5215  elinintrab  41185  2sb5nd  42180  eelTT1  42330  uun121  42403  uunTT1  42413  uunTT1p1  42414  uunTT1p2  42415  uun111  42425  uun2221  42433  uun2221p1  42434  uun2221p2  42435  2sb5ndVD  42530  2sb5ndALT  42552
  Copyright terms: Public domain W3C validator