| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anabs5 | Structured version Visualization version GIF version | ||
| Description: Absorption into embedded conjunct. (Contributed by NM, 20-Jul-1996.) (Proof shortened by Wolf Lammen, 9-Dec-2012.) |
| Ref | Expression |
|---|---|
| anabs5 | ⊢ ((𝜑 ∧ (𝜑 ∧ 𝜓)) ↔ (𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ibar 528 | . . 3 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) | |
| 2 | 1 | bicomd 223 | . 2 ⊢ (𝜑 → ((𝜑 ∧ 𝜓) ↔ 𝜓)) |
| 3 | 2 | pm5.32i 574 | 1 ⊢ ((𝜑 ∧ (𝜑 ∧ 𝜓)) ↔ (𝜑 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: rmoanidOLD 3357 reuanidOLD 3358 axrep5 5229 elinintrab 43553 2sb5nd 44537 eelTT1 44686 uun121 44759 uunTT1 44769 uunTT1p1 44770 uunTT1p2 44771 uun111 44781 uun2221 44789 uun2221p1 44790 uun2221p2 44791 2sb5ndVD 44886 2sb5ndALT 44908 |
| Copyright terms: Public domain | W3C validator |