| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anabs5 | Structured version Visualization version GIF version | ||
| Description: Absorption into embedded conjunct. (Contributed by NM, 20-Jul-1996.) (Proof shortened by Wolf Lammen, 9-Dec-2012.) |
| Ref | Expression |
|---|---|
| anabs5 | ⊢ ((𝜑 ∧ (𝜑 ∧ 𝜓)) ↔ (𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ibar 528 | . . 3 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) | |
| 2 | 1 | bicomd 223 | . 2 ⊢ (𝜑 → ((𝜑 ∧ 𝜓) ↔ 𝜓)) |
| 3 | 2 | pm5.32i 574 | 1 ⊢ ((𝜑 ∧ (𝜑 ∧ 𝜓)) ↔ (𝜑 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: rmoanidOLD 3371 reuanidOLD 3372 axrep5 5257 elinintrab 43601 2sb5nd 44585 eelTT1 44734 uun121 44807 uunTT1 44817 uunTT1p1 44818 uunTT1p2 44819 uun111 44829 uun2221 44837 uun2221p1 44838 uun2221p2 44839 2sb5ndVD 44934 2sb5ndALT 44956 |
| Copyright terms: Public domain | W3C validator |