MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  anabs5 Structured version   Visualization version   GIF version

Theorem anabs5 662
Description: Absorption into embedded conjunct. (Contributed by NM, 20-Jul-1996.) (Proof shortened by Wolf Lammen, 9-Dec-2012.)
Assertion
Ref Expression
anabs5 ((𝜑 ∧ (𝜑𝜓)) ↔ (𝜑𝜓))

Proof of Theorem anabs5
StepHypRef Expression
1 ibar 528 . . 3 (𝜑 → (𝜓 ↔ (𝜑𝜓)))
21bicomd 223 . 2 (𝜑 → ((𝜑𝜓) ↔ 𝜓))
32pm5.32i 574 1 ((𝜑 ∧ (𝜑𝜓)) ↔ (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  rmoanidOLD  3400  reuanidOLD  3401  axrep5  5309  elinintrab  43539  2sb5nd  44531  eelTT1  44681  uun121  44754  uunTT1  44764  uunTT1p1  44765  uunTT1p2  44766  uun111  44776  uun2221  44784  uun2221p1  44785  uun2221p2  44786  2sb5ndVD  44881  2sb5ndALT  44903
  Copyright terms: Public domain W3C validator