![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > anabs5 | Structured version Visualization version GIF version |
Description: Absorption into embedded conjunct. (Contributed by NM, 20-Jul-1996.) (Proof shortened by Wolf Lammen, 9-Dec-2012.) |
Ref | Expression |
---|---|
anabs5 | ⊢ ((𝜑 ∧ (𝜑 ∧ 𝜓)) ↔ (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ibar 530 | . . 3 ⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) | |
2 | 1 | bicomd 222 | . 2 ⊢ (𝜑 → ((𝜑 ∧ 𝜓) ↔ 𝜓)) |
3 | 2 | pm5.32i 576 | 1 ⊢ ((𝜑 ∧ (𝜑 ∧ 𝜓)) ↔ (𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: rmoanidOLD 3389 reuanidOLD 3390 axrep5 5292 elinintrab 42328 2sb5nd 43321 eelTT1 43471 uun121 43544 uunTT1 43554 uunTT1p1 43555 uunTT1p2 43556 uun111 43566 uun2221 43574 uun2221p1 43575 uun2221p2 43576 2sb5ndVD 43671 2sb5ndALT 43693 |
Copyright terms: Public domain | W3C validator |