| Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-ifp-ncond1 | Structured version Visualization version GIF version | ||
| Description: If one case of an if- condition is false, the other automatically follows. (Contributed by Wolf Lammen, 21-Jul-2024.) |
| Ref | Expression |
|---|---|
| wl-ifp-ncond1 | ⊢ (¬ 𝜓 → (if-(𝜑, 𝜓, 𝜒) ↔ (¬ 𝜑 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ifp 1063 | . 2 ⊢ (if-(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ∧ 𝜓) ∨ (¬ 𝜑 ∧ 𝜒))) | |
| 2 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
| 3 | 2 | con3i 154 | . . 3 ⊢ (¬ 𝜓 → ¬ (𝜑 ∧ 𝜓)) |
| 4 | biorf 936 | . . 3 ⊢ (¬ (𝜑 ∧ 𝜓) → ((¬ 𝜑 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∨ (¬ 𝜑 ∧ 𝜒)))) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ (¬ 𝜓 → ((¬ 𝜑 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∨ (¬ 𝜑 ∧ 𝜒)))) |
| 6 | 1, 5 | bitr4id 290 | 1 ⊢ (¬ 𝜓 → (if-(𝜑, 𝜓, 𝜒) ↔ (¬ 𝜑 ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 if-wif 1062 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 |
| This theorem is referenced by: wl-ifp-ncond2 37425 |
| Copyright terms: Public domain | W3C validator |