Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-luk-con1i Structured version   Visualization version   GIF version

Theorem wl-luk-con1i 35609
Description: A contraposition inference. Copy of con1i 147 with a different proof. (Contributed by Wolf Lammen, 17-Dec-2018.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
wl-luk-con1i.1 𝜑𝜓)
Assertion
Ref Expression
wl-luk-con1i 𝜓𝜑)

Proof of Theorem wl-luk-con1i
StepHypRef Expression
1 wl-luk-con1i.1 . . 3 𝜑𝜓)
2 wl-luk-pm2.21 35608 . . 3 𝜓 → (𝜓𝜑))
31, 2wl-luk-imtrid 35596 . 2 𝜓 → (¬ 𝜑𝜑))
43wl-luk-pm2.18d 35597 1 𝜓𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-luk1 35590  ax-luk2 35591  ax-luk3 35592
This theorem is referenced by:  wl-luk-ja  35610  wl-luk-notnotr  35615
  Copyright terms: Public domain W3C validator