![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > con1i | Structured version Visualization version GIF version |
Description: A contraposition inference. Inference associated with con1 146. Its associated inference is mt3 200. (Contributed by NM, 3-Jan-1993.) (Proof shortened by Mel L. O'Cat, 28-Nov-2008.) (Proof shortened by Wolf Lammen, 19-Jun-2013.) |
Ref | Expression |
---|---|
con1i.1 | ⊢ (¬ 𝜑 → 𝜓) |
Ref | Expression |
---|---|
con1i | ⊢ (¬ 𝜓 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (¬ 𝜓 → ¬ 𝜓) | |
2 | con1i.1 | . 2 ⊢ (¬ 𝜑 → 𝜓) | |
3 | 1, 2 | nsyl2 141 | 1 ⊢ (¬ 𝜓 → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: pm2.24i 150 nsyl4 158 nsyl5 159 impi 164 simplim 167 nbior 887 pm3.13 994 rb-ax2 1756 rb-ax3 1757 rb-ax4 1758 spimfw 1970 hba1w 2051 hbe1a 2141 sp 2177 axc4 2315 exmoeu 2576 necon1bi 2970 fvrn0 6922 nfunsn 6934 mpoxneldm 8197 mpoxopxnop0 8200 ixpprc 8913 fineqv 9263 unbndrank 9837 pf1rcl 21868 stri 31510 hstri 31518 ddemeas 33234 hbntg 34777 bj-modalb 35594 hba1-o 37767 axc5c711 37788 naecoms-o 37797 axc5c4c711 43160 hbntal 43314 |
Copyright terms: Public domain | W3C validator |