| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con1i | Structured version Visualization version GIF version | ||
| Description: A contraposition inference. Inference associated with con1 146. Its associated inference is mt3 201. (Contributed by NM, 3-Jan-1993.) (Proof shortened by Mel L. O'Cat, 28-Nov-2008.) (Proof shortened by Wolf Lammen, 19-Jun-2013.) |
| Ref | Expression |
|---|---|
| con1i.1 | ⊢ (¬ 𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| con1i | ⊢ (¬ 𝜓 → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (¬ 𝜓 → ¬ 𝜓) | |
| 2 | con1i.1 | . 2 ⊢ (¬ 𝜑 → 𝜓) | |
| 3 | 1, 2 | nsyl2 141 | 1 ⊢ (¬ 𝜓 → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: pm2.24i 150 nsyl4 158 nsyl5 159 impi 164 simplim 167 nbior 887 pm3.13 996 rb-ax2 1754 rb-ax3 1755 rb-ax4 1756 spimfw 1966 hba1w 2050 hbe1a 2149 sp 2188 axc4 2324 exmoeu 2578 necon1bi 2957 fvrn0 6856 nfunsn 6867 mpoxneldm 8148 mpoxopxnop0 8151 ixpprc 8849 fineqv 9158 unbndrank 9742 pf1rcl 22265 stri 32239 hstri 32247 ddemeas 34270 hbntg 35868 bj-modalb 36781 hba1-o 39016 axc5c711 39037 naecoms-o 39046 axc5c4c711 44518 hbntal 44670 resinsnlem 48995 |
| Copyright terms: Public domain | W3C validator |