| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con1i | Structured version Visualization version GIF version | ||
| Description: A contraposition inference. Inference associated with con1 146. Its associated inference is mt3 201. (Contributed by NM, 3-Jan-1993.) (Proof shortened by Mel L. O'Cat, 28-Nov-2008.) (Proof shortened by Wolf Lammen, 19-Jun-2013.) |
| Ref | Expression |
|---|---|
| con1i.1 | ⊢ (¬ 𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| con1i | ⊢ (¬ 𝜓 → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (¬ 𝜓 → ¬ 𝜓) | |
| 2 | con1i.1 | . 2 ⊢ (¬ 𝜑 → 𝜓) | |
| 3 | 1, 2 | nsyl2 141 | 1 ⊢ (¬ 𝜓 → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: pm2.24i 150 nsyl4 158 nsyl5 159 impi 164 simplim 167 nbior 887 pm3.13 996 rb-ax2 1753 rb-ax3 1754 rb-ax4 1755 spimfw 1965 hba1w 2048 hbe1a 2145 sp 2184 axc4 2322 exmoeu 2581 necon1bi 2961 fvrn0 6911 nfunsn 6923 mpoxneldm 8216 mpoxopxnop0 8219 ixpprc 8938 fineqv 9276 unbndrank 9861 pf1rcl 22292 stri 32243 hstri 32251 ddemeas 34272 hbntg 35828 bj-modalb 36739 hba1-o 38920 axc5c711 38941 naecoms-o 38950 axc5c4c711 44392 hbntal 44545 resinsnlem 48813 |
| Copyright terms: Public domain | W3C validator |