![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > con1i | Structured version Visualization version GIF version |
Description: A contraposition inference. Inference associated with con1 146. Its associated inference is mt3 201. (Contributed by NM, 3-Jan-1993.) (Proof shortened by Mel L. O'Cat, 28-Nov-2008.) (Proof shortened by Wolf Lammen, 19-Jun-2013.) |
Ref | Expression |
---|---|
con1i.1 | ⊢ (¬ 𝜑 → 𝜓) |
Ref | Expression |
---|---|
con1i | ⊢ (¬ 𝜓 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (¬ 𝜓 → ¬ 𝜓) | |
2 | con1i.1 | . 2 ⊢ (¬ 𝜑 → 𝜓) | |
3 | 1, 2 | nsyl2 141 | 1 ⊢ (¬ 𝜓 → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: pm2.24i 150 nsyl4 158 nsyl5 159 impi 164 simplim 167 nbior 887 pm3.13 996 rb-ax2 1750 rb-ax3 1751 rb-ax4 1752 spimfw 1963 hba1w 2045 hbe1a 2142 sp 2181 axc4 2320 exmoeu 2579 necon1bi 2967 fvrn0 6937 nfunsn 6949 mpoxneldm 8236 mpoxopxnop0 8239 ixpprc 8958 fineqv 9297 unbndrank 9880 pf1rcl 22369 stri 32286 hstri 32294 ddemeas 34217 hbntg 35787 bj-modalb 36699 hba1-o 38879 axc5c711 38900 naecoms-o 38909 axc5c4c711 44397 hbntal 44551 |
Copyright terms: Public domain | W3C validator |