Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > con1i | Structured version Visualization version GIF version |
Description: A contraposition inference. Inference associated with con1 146. Its associated inference is mt3 200. (Contributed by NM, 3-Jan-1993.) (Proof shortened by Mel L. O'Cat, 28-Nov-2008.) (Proof shortened by Wolf Lammen, 19-Jun-2013.) |
Ref | Expression |
---|---|
con1i.1 | ⊢ (¬ 𝜑 → 𝜓) |
Ref | Expression |
---|---|
con1i | ⊢ (¬ 𝜓 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (¬ 𝜓 → ¬ 𝜓) | |
2 | con1i.1 | . 2 ⊢ (¬ 𝜑 → 𝜓) | |
3 | 1, 2 | nsyl2 141 | 1 ⊢ (¬ 𝜓 → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: pm2.24i 150 nsyl4 158 nsyl5 159 impi 164 simplim 167 nbior 885 pm3.13 992 rb-ax2 1756 rb-ax3 1757 rb-ax4 1758 spimfw 1969 hba1w 2050 hbe1a 2140 sp 2176 axc4 2315 exmoeu 2581 necon1bi 2972 fvrn0 6802 nfunsn 6811 mpoxneldm 8028 mpoxopxnop0 8031 ixpprc 8707 fineqv 9038 unbndrank 9600 pf1rcl 21515 stri 30619 hstri 30627 ddemeas 32204 hbntg 33781 bj-modalb 34898 hba1-o 36911 axc5c711 36932 naecoms-o 36941 axc5c4c711 42019 hbntal 42173 |
Copyright terms: Public domain | W3C validator |