Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > con1i | Structured version Visualization version GIF version |
Description: A contraposition inference. Inference associated with con1 146. Its associated inference is mt3 200. (Contributed by NM, 3-Jan-1993.) (Proof shortened by Mel L. O'Cat, 28-Nov-2008.) (Proof shortened by Wolf Lammen, 19-Jun-2013.) |
Ref | Expression |
---|---|
con1i.1 | ⊢ (¬ 𝜑 → 𝜓) |
Ref | Expression |
---|---|
con1i | ⊢ (¬ 𝜓 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (¬ 𝜓 → ¬ 𝜓) | |
2 | con1i.1 | . 2 ⊢ (¬ 𝜑 → 𝜓) | |
3 | 1, 2 | nsyl2 141 | 1 ⊢ (¬ 𝜓 → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: pm2.24i 150 nsyl4 158 nsyl5 159 impi 164 simplim 167 nbior 884 pm3.13 991 rb-ax2 1757 rb-ax3 1758 rb-ax4 1759 spimfw 1970 hba1w 2051 hbe1a 2142 sp 2178 axc4 2319 exmoeu 2581 necon1bi 2971 fvrn0 6784 nfunsn 6793 mpoxneldm 7999 mpoxopxnop0 8002 ixpprc 8665 fineqv 8967 unbndrank 9531 pf1rcl 21425 stri 30520 hstri 30528 ddemeas 32104 hbntg 33687 bj-modalb 34825 hba1-o 36838 axc5c711 36859 naecoms-o 36868 axc5c4c711 41908 hbntal 42062 |
Copyright terms: Public domain | W3C validator |