![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > con1i | Structured version Visualization version GIF version |
Description: A contraposition inference. Inference associated with con1 146. Its associated inference is mt3 201. (Contributed by NM, 3-Jan-1993.) (Proof shortened by Mel L. O'Cat, 28-Nov-2008.) (Proof shortened by Wolf Lammen, 19-Jun-2013.) |
Ref | Expression |
---|---|
con1i.1 | ⊢ (¬ 𝜑 → 𝜓) |
Ref | Expression |
---|---|
con1i | ⊢ (¬ 𝜓 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (¬ 𝜓 → ¬ 𝜓) | |
2 | con1i.1 | . 2 ⊢ (¬ 𝜑 → 𝜓) | |
3 | 1, 2 | nsyl2 141 | 1 ⊢ (¬ 𝜓 → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: pm2.24i 150 nsyl4 158 nsyl5 159 impi 164 simplim 167 nbior 886 pm3.13 995 rb-ax2 1751 rb-ax3 1752 rb-ax4 1753 spimfw 1965 hba1w 2047 hbe1a 2144 sp 2184 axc4 2325 exmoeu 2584 necon1bi 2975 fvrn0 6950 nfunsn 6962 mpoxneldm 8253 mpoxopxnop0 8256 ixpprc 8977 fineqv 9326 unbndrank 9911 pf1rcl 22374 stri 32289 hstri 32297 ddemeas 34200 hbntg 35769 bj-modalb 36682 hba1-o 38853 axc5c711 38874 naecoms-o 38883 axc5c4c711 44370 hbntal 44524 |
Copyright terms: Public domain | W3C validator |