| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con1i | Structured version Visualization version GIF version | ||
| Description: A contraposition inference. Inference associated with con1 146. Its associated inference is mt3 201. (Contributed by NM, 3-Jan-1993.) (Proof shortened by Mel L. O'Cat, 28-Nov-2008.) (Proof shortened by Wolf Lammen, 19-Jun-2013.) |
| Ref | Expression |
|---|---|
| con1i.1 | ⊢ (¬ 𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| con1i | ⊢ (¬ 𝜓 → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (¬ 𝜓 → ¬ 𝜓) | |
| 2 | con1i.1 | . 2 ⊢ (¬ 𝜑 → 𝜓) | |
| 3 | 1, 2 | nsyl2 141 | 1 ⊢ (¬ 𝜓 → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: pm2.24i 150 nsyl4 158 nsyl5 159 impi 164 simplim 167 nbior 887 pm3.13 996 rb-ax2 1754 rb-ax3 1755 rb-ax4 1756 spimfw 1966 hba1w 2050 hbe1a 2147 sp 2186 axc4 2322 exmoeu 2576 necon1bi 2956 fvrn0 6850 nfunsn 6861 mpoxneldm 8142 mpoxopxnop0 8145 ixpprc 8843 fineqv 9151 unbndrank 9732 pf1rcl 22262 stri 32232 hstri 32240 ddemeas 34244 hbntg 35838 bj-modalb 36749 hba1-o 38935 axc5c711 38956 naecoms-o 38965 axc5c4c711 44433 hbntal 44585 resinsnlem 48901 |
| Copyright terms: Public domain | W3C validator |