| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > con1i | Structured version Visualization version GIF version | ||
| Description: A contraposition inference. Inference associated with con1 146. Its associated inference is mt3 201. (Contributed by NM, 3-Jan-1993.) (Proof shortened by Mel L. O'Cat, 28-Nov-2008.) (Proof shortened by Wolf Lammen, 19-Jun-2013.) |
| Ref | Expression |
|---|---|
| con1i.1 | ⊢ (¬ 𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| con1i | ⊢ (¬ 𝜓 → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (¬ 𝜓 → ¬ 𝜓) | |
| 2 | con1i.1 | . 2 ⊢ (¬ 𝜑 → 𝜓) | |
| 3 | 1, 2 | nsyl2 141 | 1 ⊢ (¬ 𝜓 → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: pm2.24i 150 nsyl4 158 nsyl5 159 impi 164 simplim 167 nbior 887 pm3.13 996 rb-ax2 1753 rb-ax3 1754 rb-ax4 1755 spimfw 1965 hba1w 2048 hbe1a 2145 sp 2184 axc4 2320 exmoeu 2574 necon1bi 2953 fvrn0 6854 nfunsn 6866 mpoxneldm 8152 mpoxopxnop0 8155 ixpprc 8853 fineqv 9168 unbndrank 9757 pf1rcl 22252 stri 32219 hstri 32227 ddemeas 34202 hbntg 35778 bj-modalb 36689 hba1-o 38875 axc5c711 38896 naecoms-o 38905 axc5c4c711 44374 hbntal 44527 resinsnlem 48856 |
| Copyright terms: Public domain | W3C validator |