Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imim2i | Structured version Visualization version GIF version |
Description: Inference adding common antecedents in an implication. Inference associated with imim2 58. Its associated inference is syl 17. (Contributed by NM, 28-Dec-1992.) |
Ref | Expression |
---|---|
imim2i.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
imim2i | ⊢ ((𝜒 → 𝜑) → (𝜒 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imim2i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜒 → (𝜑 → 𝜓)) |
3 | 2 | a2i 14 | 1 ⊢ ((𝜒 → 𝜑) → (𝜒 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: imim12i 62 imim3i 64 ja 186 imim21b 395 jcab 518 pm3.48 961 nanass 1507 nic-ax 1674 nic-axALT 1675 tbw-bijust 1699 merco1 1714 19.23v 1944 19.24 1988 hbsbw 2168 sb4a 2482 2eu6 2656 axi5r 2699 ralrexbidOLD 3106 r19.36v 3176 ceqsalt 3471 vtoclgft 3501 spcgft 3536 elabgt 3613 mo2icl 3660 euind 3670 reu6 3672 reuind 3699 sbciegft 3765 elpwunsn 4632 dfiin2g 4980 invdisj 5077 ssrel 5725 ssrelOLD 5726 dff3 7033 fnoprabg 7460 tfindsg 7776 findsg 7815 zfrep6 7866 tz7.48-1 8345 odi 8482 r1sdom 9632 kmlem6 10013 kmlem12 10019 zorng 10362 squeeze0 11980 xrsupexmnf 13141 xrinfmexpnf 13142 mptnn0fsuppd 13820 rexanre 15158 pmatcollpw2lem 22033 tgcnp 22511 lmcvg 22520 iblcnlem 25060 limcresi 25156 isch3 29892 disjexc 31219 cntmeas 32492 bnj900 33208 bnj1172 33280 bnj1174 33282 bnj1176 33284 gonarlem 33655 goalrlem 33657 axextdfeq 34058 hbimtg 34067 nn0prpw 34651 meran3 34741 waj-ax 34742 lukshef-ax2 34743 imsym1 34746 bj-peircestab 34872 bj-orim2 34875 bj-andnotim 34909 bj-ssbid2ALT 34983 bj-19.21bit 35011 bj-substax12 35042 bj-ceqsalt0 35207 bj-ceqsalt1 35208 wl-embant 35825 contrd 36411 ax12indi 37262 ltrnnid 38455 ismrc 40836 frege55lem1a 41847 frege55lem1b 41876 frege55lem1c 41897 frege92 41936 pm11.71 42388 exbir 42471 ax6e2ndeqVD 42902 ax6e2ndeqALT 42924 r19.36vf 43058 nn0sumshdiglemA 46383 nn0sumshdiglemB 46384 |
Copyright terms: Public domain | W3C validator |