| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imim2i | Structured version Visualization version GIF version | ||
| Description: Inference adding common antecedents in an implication. Inference associated with imim2 58. Its associated inference is syl 17. (Contributed by NM, 28-Dec-1992.) |
| Ref | Expression |
|---|---|
| imim2i.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| imim2i | ⊢ ((𝜒 → 𝜑) → (𝜒 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imim2i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜒 → (𝜑 → 𝜓)) |
| 3 | 2 | a2i 14 | 1 ⊢ ((𝜒 → 𝜑) → (𝜒 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: imim12i 62 imim3i 64 ja 186 imim21b 394 jcab 517 pm3.48 965 nanass 1510 nic-ax 1673 nic-axALT 1674 tbw-bijust 1698 merco1 1713 19.23v 1942 19.24 1991 hbsbwOLD 2173 sb4a 2485 2eu6 2657 axi5r 2700 r19.36v 3170 ceqsal1t 3498 spcgft 3533 vtoclgft 3536 elabgt 3656 elabgtOLD 3657 mo2icl 3702 euind 3712 reu6 3714 reuind 3741 sbciegftOLD 3808 elpwunsn 4665 dfiin2g 5013 invdisj 5110 ssrel 5766 ssrelOLD 5767 dff3 7095 fnoprabg 7535 tfindsg 7861 findsg 7898 zfrep6 7958 tz7.48-1 8462 odi 8596 r1sdom 9793 kmlem6 10175 kmlem12 10181 zorng 10523 squeeze0 12150 xrsupexmnf 13326 xrinfmexpnf 13327 mptnn0fsuppd 14021 rexanre 15370 pmatcollpw2lem 22720 tgcnp 23196 lmcvg 23205 iblcnlem 25747 limcresi 25843 isch3 31227 disjexc 32579 ssdifidlprm 33478 cntmeas 34262 bnj900 34965 bnj1172 35037 bnj1174 35039 bnj1176 35041 gonarlem 35421 goalrlem 35423 axextdfeq 35820 hbimtg 35829 nn0prpw 36346 meran3 36436 waj-ax 36437 lukshef-ax2 36438 imsym1 36441 bj-peircestab 36576 bj-orim2 36579 bj-andnotim 36611 bj-ssbid2ALT 36686 bj-19.21bit 36713 bj-substax12 36744 bj-ceqsalt0 36907 bj-ceqsalt1 36908 wl-embant 37533 contrd 38126 ax12indi 38967 ltrnnid 40160 ismrc 42699 frege55lem1a 43865 frege55lem1b 43894 frege55lem1c 43915 frege92 43954 pm11.71 44396 exbir 44479 ax6e2ndeqVD 44908 ax6e2ndeqALT 44930 r19.36vf 45140 nn0sumshdiglemA 48579 nn0sumshdiglemB 48580 setrec2mpt 49541 |
| Copyright terms: Public domain | W3C validator |