Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imim2i | Structured version Visualization version GIF version |
Description: Inference adding common antecedents in an implication. Inference associated with imim2 58. Its associated inference is syl 17. (Contributed by NM, 28-Dec-1992.) |
Ref | Expression |
---|---|
imim2i.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
imim2i | ⊢ ((𝜒 → 𝜑) → (𝜒 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imim2i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜒 → (𝜑 → 𝜓)) |
3 | 2 | a2i 14 | 1 ⊢ ((𝜒 → 𝜑) → (𝜒 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: imim12i 62 imim3i 64 ja 186 imim21b 394 jcab 517 pm3.48 960 nanass 1502 nic-ax 1677 nic-axALT 1678 tbw-bijust 1702 merco1 1717 19.23v 1946 19.24 1990 hbsbw 2171 sb4a 2484 2eu6 2658 axi5r 2701 ralrexbidOLD 3251 r19.36v 3269 ceqsalt 3452 vtoclgft 3482 spcgft 3517 elabgt 3596 mo2icl 3644 euind 3654 reu6 3656 reuind 3683 sbciegft 3749 elpwunsn 4616 dfiin2g 4958 invdisj 5054 ssrel 5683 dff3 6958 fnoprabg 7375 tfindsg 7682 findsg 7720 zfrep6 7771 tz7.48-1 8244 odi 8372 r1sdom 9463 kmlem6 9842 kmlem12 9848 zorng 10191 squeeze0 11808 xrsupexmnf 12968 xrinfmexpnf 12969 mptnn0fsuppd 13646 rexanre 14986 pmatcollpw2lem 21834 tgcnp 22312 lmcvg 22321 iblcnlem 24858 limcresi 24954 isch3 29504 disjexc 30833 cntmeas 32094 bnj900 32809 bnj1172 32881 bnj1174 32883 bnj1176 32885 gonarlem 33256 goalrlem 33258 axextdfeq 33679 hbimtg 33688 nn0prpw 34439 meran3 34529 waj-ax 34530 lukshef-ax2 34531 imsym1 34534 bj-peircestab 34660 bj-orim2 34663 bj-andnotim 34697 bj-ssbid2ALT 34771 bj-19.21bit 34799 bj-substax12 34830 bj-ceqsalt0 34996 bj-ceqsalt1 34997 wl-embant 35596 contrd 36182 ax12indi 36885 ltrnnid 38077 ismrc 40439 frege55lem1a 41363 frege55lem1b 41392 frege55lem1c 41413 frege92 41452 pm11.71 41904 exbir 41987 ax6e2ndeqVD 42418 ax6e2ndeqALT 42440 r19.36vf 42574 nn0sumshdiglemA 45853 nn0sumshdiglemB 45854 |
Copyright terms: Public domain | W3C validator |