Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imim2i | Structured version Visualization version GIF version |
Description: Inference adding common antecedents in an implication. Inference associated with imim2 58. Its associated inference is syl 17. (Contributed by NM, 28-Dec-1992.) |
Ref | Expression |
---|---|
imim2i.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
imim2i | ⊢ ((𝜒 → 𝜑) → (𝜒 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imim2i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜒 → (𝜑 → 𝜓)) |
3 | 2 | a2i 14 | 1 ⊢ ((𝜒 → 𝜑) → (𝜒 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: imim12i 62 imim3i 64 ja 186 imim21b 395 jcab 518 pm3.48 961 nanass 1505 nic-ax 1676 nic-axALT 1677 tbw-bijust 1701 merco1 1716 19.23v 1946 19.24 1990 hbsbw 2170 sb4a 2485 2eu6 2659 axi5r 2702 ralrexbidOLD 3257 r19.36v 3273 ceqsalt 3463 vtoclgft 3493 spcgft 3528 elabgt 3604 mo2icl 3650 euind 3660 reu6 3662 reuind 3689 sbciegft 3755 elpwunsn 4620 dfiin2g 4963 invdisj 5059 ssrel 5694 ssrelOLD 5695 dff3 6985 fnoprabg 7406 tfindsg 7716 findsg 7755 zfrep6 7806 tz7.48-1 8283 odi 8419 r1sdom 9541 kmlem6 9920 kmlem12 9926 zorng 10269 squeeze0 11887 xrsupexmnf 13048 xrinfmexpnf 13049 mptnn0fsuppd 13727 rexanre 15067 pmatcollpw2lem 21935 tgcnp 22413 lmcvg 22422 iblcnlem 24962 limcresi 25058 isch3 29612 disjexc 30941 cntmeas 32203 bnj900 32918 bnj1172 32990 bnj1174 32992 bnj1176 32994 gonarlem 33365 goalrlem 33367 axextdfeq 33782 hbimtg 33791 nn0prpw 34521 meran3 34611 waj-ax 34612 lukshef-ax2 34613 imsym1 34616 bj-peircestab 34742 bj-orim2 34745 bj-andnotim 34779 bj-ssbid2ALT 34853 bj-19.21bit 34881 bj-substax12 34912 bj-ceqsalt0 35078 bj-ceqsalt1 35079 wl-embant 35678 contrd 36264 ax12indi 36965 ltrnnid 38157 ismrc 40530 frege55lem1a 41481 frege55lem1b 41510 frege55lem1c 41531 frege92 41570 pm11.71 42022 exbir 42105 ax6e2ndeqVD 42536 ax6e2ndeqALT 42558 r19.36vf 42692 nn0sumshdiglemA 45976 nn0sumshdiglemB 45977 |
Copyright terms: Public domain | W3C validator |