![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imim2i | Structured version Visualization version GIF version |
Description: Inference adding common antecedents in an implication. Inference associated with imim2 58. Its associated inference is syl 17. (Contributed by NM, 28-Dec-1992.) |
Ref | Expression |
---|---|
imim2i.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
imim2i | ⊢ ((𝜒 → 𝜑) → (𝜒 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imim2i.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜒 → (𝜑 → 𝜓)) |
3 | 2 | a2i 14 | 1 ⊢ ((𝜒 → 𝜑) → (𝜒 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: imim12i 62 imim3i 64 ja 186 imim21b 396 jcab 519 pm3.48 963 nanass 1509 nic-ax 1676 nic-axALT 1677 tbw-bijust 1701 merco1 1716 19.23v 1946 19.24 1990 hbsbw 2170 sb4a 2480 2eu6 2653 axi5r 2696 ralrexbidOLD 3108 r19.36v 3184 ceqsal1t 3505 vtoclgft 3541 spcgft 3579 elabgt 3663 mo2icl 3711 euind 3721 reu6 3723 reuind 3750 sbciegft 3816 elpwunsn 4688 dfiin2g 5036 invdisj 5133 ssrel 5783 ssrelOLD 5784 dff3 7102 fnoprabg 7531 tfindsg 7850 findsg 7890 zfrep6 7941 tz7.48-1 8443 odi 8579 r1sdom 9769 kmlem6 10150 kmlem12 10156 zorng 10499 squeeze0 12117 xrsupexmnf 13284 xrinfmexpnf 13285 mptnn0fsuppd 13963 rexanre 15293 pmatcollpw2lem 22279 tgcnp 22757 lmcvg 22766 iblcnlem 25306 limcresi 25402 isch3 30494 disjexc 31824 cntmeas 33224 bnj900 33940 bnj1172 34012 bnj1174 34014 bnj1176 34016 gonarlem 34385 goalrlem 34387 axextdfeq 34769 hbimtg 34778 nn0prpw 35208 meran3 35298 waj-ax 35299 lukshef-ax2 35300 imsym1 35303 bj-peircestab 35429 bj-orim2 35432 bj-andnotim 35466 bj-ssbid2ALT 35540 bj-19.21bit 35568 bj-substax12 35599 bj-ceqsalt0 35764 bj-ceqsalt1 35765 wl-embant 36379 contrd 36965 ax12indi 37814 ltrnnid 39007 ismrc 41439 frege55lem1a 42617 frege55lem1b 42646 frege55lem1c 42667 frege92 42706 pm11.71 43156 exbir 43239 ax6e2ndeqVD 43670 ax6e2ndeqALT 43692 r19.36vf 43825 nn0sumshdiglemA 47305 nn0sumshdiglemB 47306 setrec2mpt 47742 |
Copyright terms: Public domain | W3C validator |