| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cadbi123d | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the adder carry. (Contributed by Mario Carneiro, 4-Sep-2016.) |
| Ref | Expression |
|---|---|
| cadbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| cadbid.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
| cadbid.3 | ⊢ (𝜑 → (𝜂 ↔ 𝜁)) |
| Ref | Expression |
|---|---|
| cadbi123d | ⊢ (𝜑 → (cadd(𝜓, 𝜃, 𝜂) ↔ cadd(𝜒, 𝜏, 𝜁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cadbid.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | cadbid.2 | . . . 4 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
| 3 | 1, 2 | anbi12d 632 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) ↔ (𝜒 ∧ 𝜏))) |
| 4 | cadbid.3 | . . . 4 ⊢ (𝜑 → (𝜂 ↔ 𝜁)) | |
| 5 | 1, 2 | xorbi12d 1525 | . . . 4 ⊢ (𝜑 → ((𝜓 ⊻ 𝜃) ↔ (𝜒 ⊻ 𝜏))) |
| 6 | 4, 5 | anbi12d 632 | . . 3 ⊢ (𝜑 → ((𝜂 ∧ (𝜓 ⊻ 𝜃)) ↔ (𝜁 ∧ (𝜒 ⊻ 𝜏)))) |
| 7 | 3, 6 | orbi12d 918 | . 2 ⊢ (𝜑 → (((𝜓 ∧ 𝜃) ∨ (𝜂 ∧ (𝜓 ⊻ 𝜃))) ↔ ((𝜒 ∧ 𝜏) ∨ (𝜁 ∧ (𝜒 ⊻ 𝜏))))) |
| 8 | df-cad 1607 | . 2 ⊢ (cadd(𝜓, 𝜃, 𝜂) ↔ ((𝜓 ∧ 𝜃) ∨ (𝜂 ∧ (𝜓 ⊻ 𝜃)))) | |
| 9 | df-cad 1607 | . 2 ⊢ (cadd(𝜒, 𝜏, 𝜁) ↔ ((𝜒 ∧ 𝜏) ∨ (𝜁 ∧ (𝜒 ⊻ 𝜏)))) | |
| 10 | 7, 8, 9 | 3bitr4g 314 | 1 ⊢ (𝜑 → (cadd(𝜓, 𝜃, 𝜂) ↔ cadd(𝜒, 𝜏, 𝜁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ⊻ wxo 1511 caddwcad 1606 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-xor 1512 df-cad 1607 |
| This theorem is referenced by: cadbi123i 1611 sadfval 16476 sadcp1 16479 |
| Copyright terms: Public domain | W3C validator |