Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cadbi123d | Structured version Visualization version GIF version |
Description: Equality theorem for the adder carry. (Contributed by Mario Carneiro, 4-Sep-2016.) |
Ref | Expression |
---|---|
cadbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
cadbid.2 | ⊢ (𝜑 → (𝜃 ↔ 𝜏)) |
cadbid.3 | ⊢ (𝜑 → (𝜂 ↔ 𝜁)) |
Ref | Expression |
---|---|
cadbi123d | ⊢ (𝜑 → (cadd(𝜓, 𝜃, 𝜂) ↔ cadd(𝜒, 𝜏, 𝜁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cadbid.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | cadbid.2 | . . . 4 ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | |
3 | 1, 2 | anbi12d 631 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) ↔ (𝜒 ∧ 𝜏))) |
4 | cadbid.3 | . . . 4 ⊢ (𝜑 → (𝜂 ↔ 𝜁)) | |
5 | 1, 2 | xorbi12d 1522 | . . . 4 ⊢ (𝜑 → ((𝜓 ⊻ 𝜃) ↔ (𝜒 ⊻ 𝜏))) |
6 | 4, 5 | anbi12d 631 | . . 3 ⊢ (𝜑 → ((𝜂 ∧ (𝜓 ⊻ 𝜃)) ↔ (𝜁 ∧ (𝜒 ⊻ 𝜏)))) |
7 | 3, 6 | orbi12d 916 | . 2 ⊢ (𝜑 → (((𝜓 ∧ 𝜃) ∨ (𝜂 ∧ (𝜓 ⊻ 𝜃))) ↔ ((𝜒 ∧ 𝜏) ∨ (𝜁 ∧ (𝜒 ⊻ 𝜏))))) |
8 | df-cad 1609 | . 2 ⊢ (cadd(𝜓, 𝜃, 𝜂) ↔ ((𝜓 ∧ 𝜃) ∨ (𝜂 ∧ (𝜓 ⊻ 𝜃)))) | |
9 | df-cad 1609 | . 2 ⊢ (cadd(𝜒, 𝜏, 𝜁) ↔ ((𝜒 ∧ 𝜏) ∨ (𝜁 ∧ (𝜒 ⊻ 𝜏)))) | |
10 | 7, 8, 9 | 3bitr4g 314 | 1 ⊢ (𝜑 → (cadd(𝜓, 𝜃, 𝜂) ↔ cadd(𝜒, 𝜏, 𝜁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 844 ⊻ wxo 1506 caddwcad 1608 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-xor 1507 df-cad 1609 |
This theorem is referenced by: cadbi123i 1613 sadfval 16159 sadcp1 16162 |
Copyright terms: Public domain | W3C validator |